JEE Mathematics Complete Preparation

Master all JEE Math topics with detailed theory, solved examples, formulas, and practice problems. Learn from IIT Roorkee M.Tech graduate.

Start Learning Take Mock Test

Inverse Trigonometric Functions

Inverse trigonometric functions are the inverse functions of the trigonometric functions. They are used to obtain an angle from any of the angle's trigonometric ratios.

  • $$ \sin^{-1} x \quad \text{or} \quad \arcsin x $$
  • $$ \cos^{-1} x \quad \text{or} \quad \arccos x $$
  • $$ \tan^{-1} x \quad \text{or} \quad \arctan x $$
  • $$ \csc^{-1} x \quad \text{or} \quad \operatorname{arccsc} x $$
  • $$ \sec^{-1} x \quad \text{or} \quad \operatorname{arcsec} x $$
  • $$ \cot^{-1} x \quad \text{or} \quad \operatorname{arccot} x $$

Domain and Range of Inverse Trigonometric Functions:

  • $$ \sin^{-1} x : \text{Domain} = [-1, 1], \text{Range} = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] $$
  • $$ \cos^{-1} x : \text{Domain} = [-1, 1], \text{Range} = [0, \pi] $$
  • $$ \tan^{-1} x : \text{Domain} = \mathbb{R}, \text{Range} = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) $$
  • $$ \csc^{-1} x : \text{Domain} = (-\infty, -1] \cup [1, \infty), \text{Range} = \left[-\frac{\pi}{2}, 0\right) \cup \left(0, \frac{\pi}{2}\right] $$
  • $$ \sec^{-1} x : \text{Domain} = (-\infty, -1] \cup [1, \infty), \text{Range} = \left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right] $$
  • $$ \cot^{-1} x : \text{Domain} = \mathbb{R}, \text{Range} = (0, \pi) $$

Principal Values:

The inverse trigonometric functions are multi-valued. To make them single-valued, we restrict their ranges to specific intervals called principal value branches.

Note: Inverse trigonometric functions are crucial for solving equations involving trigonometric functions and appear frequently in JEE problems, especially in integration and differentiation.

Definition and Concept of Inverse Trigonometric Functions

Inverse trigonometric functions are the inverses of trigonometric functions. Since trigonometric functions are periodic, they are not one-to-one, so their inverses are defined only on restricted domains where they are one-to-one.

For example, the sine function:

  • Sine function: $y = \sin x$ is not one-to-one on its entire domain
  • We restrict the domain to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ to make it one-to-one
  • Then we define the inverse: $x = \sin^{-1} y$ or $x = \arcsin y$

This means: If $y = \sin x$ with $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, then $x = \sin^{-1} y$.

Notes: 1. The notation $\sin^{-1} x$ does NOT mean $(\sin x)^{-1} = \frac{1}{\sin x}$.
2. The range of each inverse trigonometric function is carefully chosen to ensure it's single-valued.
3. These functions are essential for solving trigonometric equations and appear in calculus problems.

Graphs of Inverse Trigonometric Functions

The graphs of inverse trigonometric functions can be obtained by reflecting the graphs of the corresponding trigonometric functions about the line $y = x$, but only for the restricted domains.

Key Properties of Graphs:

  • $\sin^{-1} x$: Increasing function, passes through origin
  • $\cos^{-1} x$: Decreasing function, passes through $(1, 0)$ and $(-1, \pi)$
  • $\tan^{-1} x$: Increasing function, has horizontal asymptotes at $y = \pm \frac{\pi}{2}$
  • $\cot^{-1} x$: Decreasing function, has horizontal asymptotes at $y = 0$ and $y = \pi$
  • $\sec^{-1} x$ and $\csc^{-1} x$: Defined only for $|x| \geq 1$

Notes: Understanding these graphs helps visualize the domain and range restrictions and is useful for solving inequalities involving inverse trigonometric functions.

Properties of Inverse Trigonometric Functions

1. Basic Properties:

  • $\sin(\sin^{-1} x) = x$ for $x \in [-1, 1]$
  • $\sin^{-1}(\sin x) = x$ for $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
  • $\cos(\cos^{-1} x) = x$ for $x \in [-1, 1]$
  • $\cos^{-1}(\cos x) = x$ for $x \in [0, \pi]$
  • $\tan(\tan^{-1} x) = x$ for $x \in \mathbb{R}$
  • $\tan^{-1}(\tan x) = x$ for $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

2. Properties with Negative Arguments:

  • $\sin^{-1}(-x) = -\sin^{-1} x$
  • $\cos^{-1}(-x) = \pi - \cos^{-1} x$
  • $\tan^{-1}(-x) = -\tan^{-1} x$
  • $\csc^{-1}(-x) = -\csc^{-1} x$
  • $\sec^{-1}(-x) = \pi - \sec^{-1} x$
  • $\cot^{-1}(-x) = \pi - \cot^{-1} x$

3. Reciprocal Relations:

  • $\sin^{-1}\left(\frac{1}{x}\right) = \csc^{-1} x$ for $|x| \geq 1$
  • $\cos^{-1}\left(\frac{1}{x}\right) = \sec^{-1} x$ for $|x| \geq 1$
  • $\tan^{-1}\left(\frac{1}{x}\right) = \cot^{-1} x$ for $x > 0$
  • $\tan^{-1}\left(\frac{1}{x}\right) = \cot^{-1} x - \pi$ for $x < 0$

Notes: These properties are essential for simplifying expressions and solving equations involving inverse trigonometric functions in JEE problems.

Sum and Difference Formulas

1. Addition Formulas:

  • $\sin^{-1} x + \sin^{-1} y = \sin^{-1}(x\sqrt{1-y^2} + y\sqrt{1-x^2})$ for $x^2+y^2 \leq 1$ or $xy < 0$
  • $\sin^{-1} x + \sin^{-1} y = \pi - \sin^{-1}(x\sqrt{1-y^2} + y\sqrt{1-x^2})$ for $x^2+y^2 > 1$ and $x,y > 0$
  • $\sin^{-1} x + \sin^{-1} y = -\pi - \sin^{-1}(x\sqrt{1-y^2} + y\sqrt{1-x^2})$ for $x^2+y^2 > 1$ and $x,y < 0$
  • $\cos^{-1} x + \cos^{-1} y = \cos^{-1}(xy - \sqrt{1-x^2}\sqrt{1-y^2})$ for $x+y \geq 0$
  • $\cos^{-1} x + \cos^{-1} y = 2\pi - \cos^{-1}(xy - \sqrt{1-x^2}\sqrt{1-y^2})$ for $x+y < 0$
  • $\tan^{-1} x + \tan^{-1} y = \tan^{-1}\left(\frac{x+y}{1-xy}\right)$ for $xy < 1$
  • $\tan^{-1} x + \tan^{-1} y = \pi + \tan^{-1}\left(\frac{x+y}{1-xy}\right)$ for $x > 0, y > 0, xy > 1$
  • $\tan^{-1} x + \tan^{-1} y = -\pi + \tan^{-1}\left(\frac{x+y}{1-xy}\right)$ for $x < 0, y < 0, xy> 1$

2. Subtraction Formulas:

  • $\sin^{-1} x - \sin^{-1} y = \sin^{-1}(x\sqrt{1-y^2} - y\sqrt{1-x^2})$
  • $\cos^{-1} x - \cos^{-1} y = \cos^{-1}(xy + \sqrt{1-x^2}\sqrt{1-y^2})$ for $x \leq y$
  • $\cos^{-1} x - \cos^{-1} y = -\cos^{-1}(xy + \sqrt{1-x^2}\sqrt{1-y^2})$ for $x > y$
  • $\tan^{-1} x - \tan^{-1} y = \tan^{-1}\left(\frac{x-y}{1+xy}\right)$ for $xy > -1$
  • $\tan^{-1} x - \tan^{-1} y = \pi + \tan^{-1}\left(\frac{x-y}{1+xy}\right)$ for $x > 0, y < 0, xy < -1$
  • $\tan^{-1} x - \tan^{-1} y = -\pi + \tan^{-1}\left(\frac{x-y}{1+xy}\right)$ for $x < 0, y> 0, xy < -1$

Notes: These formulas are crucial for simplifying complex expressions and solving equations involving sums and differences of inverse trigonometric functions in JEE problems.

Multiple Angle Formulas

1. Double Angle Formulas:

  • $2\sin^{-1} x = \sin^{-1}(2x\sqrt{1-x^2})$ for $|x| \leq \frac{1}{\sqrt{2}}$
  • $2\sin^{-1} x = \pi - \sin^{-1}(2x\sqrt{1-x^2})$ for $\frac{1}{\sqrt{2}} < x \leq 1$
  • $2\sin^{-1} x = -\pi - \sin^{-1}(2x\sqrt{1-x^2})$ for $-1 \leq x < -\frac{1}{\sqrt{2}}$
  • $2\cos^{-1} x = \cos^{-1}(2x^2 - 1)$ for $0 \leq x \leq 1$
  • $2\cos^{-1} x = 2\pi - \cos^{-1}(2x^2 - 1)$ for $-1 \leq x < 0$
  • $2\tan^{-1} x = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$ for $|x| < 1$
  • $2\tan^{-1} x = \pi + \tan^{-1}\left(\frac{2x}{1-x^2}\right)$ for $x > 1$
  • $2\tan^{-1} x = -\pi + \tan^{-1}\left(\frac{2x}{1-x^2}\right)$ for $x < -1$

2. Triple Angle Formulas:

  • $3\sin^{-1} x = \sin^{-1}(3x - 4x^3)$ for $|x| \leq \frac{1}{2}$
  • $3\cos^{-1} x = \cos^{-1}(4x^3 - 3x)$ for $\frac{1}{2} \leq x \leq 1$
  • $3\tan^{-1} x = \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right)$ for $|x| < \frac{1}{\sqrt{3}}$

Notes: These formulas are useful for solving equations where arguments of inverse trigonometric functions are multiples of each other, a common type of problem in JEE.

Conversion Between Inverse Trigonometric Functions

Conversion Formulas:

  • $\sin^{-1} x = \cos^{-1}\sqrt{1-x^2} = \tan^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)$ for $0 \leq x \leq 1$
  • $\sin^{-1} x = -\cos^{-1}\sqrt{1-x^2} = \tan^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)$ for $-1 \leq x < 0$
  • $\cos^{-1} x = \sin^{-1}\sqrt{1-x^2} = \tan^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right)$ for $0 < x \leq 1$
  • $\cos^{-1} x = \pi - \sin^{-1}\sqrt{1-x^2} = \pi + \tan^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right)$ for $-1 \leq x < 0$
  • $\tan^{-1} x = \sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right) = \cos^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right)$ for $x \geq 0$
  • $\tan^{-1} x = -\sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right) = \pi - \cos^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right)$ for $x < 0$

Special Cases:

  • $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$ for $x \in [-1, 1]$
  • $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$ for $x \in \mathbb{R}$
  • $\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}$ for $|x| \geq 1$

Notes: These conversion formulas are extremely useful for simplifying complex expressions and solving equations where different inverse trigonometric functions appear together.

Important Identities and Formulas

Key Identities:

  • $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \tan^{-1}\left(\frac{x+y+z-xyz}{1-xy-yz-zx}\right)$
  • $\sin^{-1} x \pm \sin^{-1} y = \sin^{-1}(x\sqrt{1-y^2} \pm y\sqrt{1-x^2})$
  • $\cos^{-1} x \pm \cos^{-1} y = \cos^{-1}(xy \mp \sqrt{1-x^2}\sqrt{1-y^2})$
  • $\tan^{-1} x \pm \tan^{-1} y = \tan^{-1}\left(\frac{x \pm y}{1 \mp xy}\right)$
  • $\sin^{-1} x = 2\tan^{-1}\left(\frac{x}{1+\sqrt{1-x^2}}\right)$
  • $\cos^{-1} x = 2\tan^{-1}\left(\frac{\sqrt{1-x^2}}{1+x}\right)$

Special Values:

  • $\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$
  • $\cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$
  • $\tan^{-1}(1) = \frac{\pi}{4}$
  • $\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}$
  • $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6}$
  • $\tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$

Notes: Memorizing these identities and special values is crucial for quickly solving JEE problems involving inverse trigonometric functions.

Solving Equations with Inverse Trigonometric Functions

To solve equations involving inverse trigonometric functions:

  • Apply the appropriate trigonometric function to both sides
  • Use algebraic techniques to solve the resulting equation
  • Check that the solutions lie within the domain of the original inverse trigonometric functions
  • Verify solutions by substituting back into the original equation

Common Equation Types:

  • Equations of the form: $\sin^{-1} x + \sin^{-1} y = \text{constant}$
  • Equations of the form: $\tan^{-1} x + \tan^{-1} y = \tan^{-1} z$
  • Equations involving multiple inverse trigonometric functions
  • Equations where the argument is an expression in $x$

Notes: Always verify that your solutions satisfy the domain restrictions of the inverse trigonometric functions. Extraneous solutions are common in these types of equations.

Height and Distance - Applications of Trigonometry

Height and Distance problems involve using trigonometric ratios to find unknown heights, distances, or angles in real-world scenarios. These are practical applications of trigonometry used in surveying, navigation, and engineering.

Basic Concepts and Terminology:

  • Line of Sight: The straight line from the eye of the observer to the point being viewed
  • Angle of Elevation: The angle between the horizontal and the line of sight when viewing an object above the horizontal
  • Angle of Depression: The angle between the horizontal and the line of sight when viewing an object below the horizontal
  • Horizontal Line: A line parallel to the ground level

Note: Height and Distance problems test the application of trigonometric concepts in practical situations. They frequently appear in JEE examinations and require strong visualization skills.

Angle of Elevation and Depression

Angle of Elevation:

When an observer looks at an object situated above the horizontal level, the angle between the line of sight and the horizontal line is called the angle of elevation.

If the angle of elevation is θ, then:

$$ \tan \theta = \frac{\text{Height of object}}{\text{Distance from object}} $$

Angle of Depression:

When an observer looks at an object situated below the horizontal level, the angle between the line of sight and the horizontal line is called the angle of depression.

If the angle of depression is θ, then:

$$ \tan \theta = \frac{\text{Depth of object}}{\text{Distance from object}} $$

Important: The angle of elevation and angle of depression between two points are equal when the points are at the same horizontal level.

Basic Formulas and Relationships

Key Trigonometric Relationships:

  • For angle of elevation θ:

    $$ \sin \theta = \frac{\text{Height}}{\text{Hypotenuse}} $$

    $$ \cos \theta = \frac{\text{Distance}}{\text{Hypotenuse}} $$

    $$ \tan \theta = \frac{\text{Height}}{\text{Distance}} $$

  • For angle of depression θ:

    $$ \sin \theta = \frac{\text{Depth}}{\text{Hypotenuse}} $$

    $$ \cos \theta = \frac{\text{Distance}}{\text{Hypotenuse}} $$

    $$ \tan \theta = \frac{\text{Depth}}{\text{Distance}} $$

Pythagorean Theorem Applications:

In right-angled triangles formed in height and distance problems:

$$ (\text{Hypotenuse})^2 = (\text{Height})^2 + (\text{Distance})^2 $$

Notes: Always identify the right-angled triangle in the problem and apply the appropriate trigonometric ratio based on the given information.

Single Object Problems

1. Basic Single Object Problems:

These involve finding the height or distance of a single object using one angle of elevation/depression.

Example:

A person observes the top of a tower at an angle of elevation of 30°. If the person is 50 m away from the tower, find the height of the tower.

$$ \tan 30° = \frac{h}{50} \Rightarrow h = 50 \times \frac{1}{\sqrt{3}} = \frac{50}{\sqrt{3}} \text{ m} $$

2. Problems with Observer Height:

When the observer's eye level is at some height above ground.

Example:

A 1.5 m tall person observes the top of a building at 45° elevation from 20 m away. Find building height.

$$ \tan 45° = \frac{h-1.5}{20} \Rightarrow h = 20 + 1.5 = 21.5 \text{ m} $$

Notes: Remember to account for the observer's height when it's given. The actual height of the object = calculated height + observer's height.

Two Position Problems

1. Two Positions on Same Side:

Observer moves toward or away from the object, measuring angles from two different positions.

Example:

From a point on the ground, the angles of elevation of bottom and top of a tower are 45° and 60° respectively. If the tower is 20 m high, find the distance of the point from the tower.

Let distance = x, then:

$$ \tan 45° = \frac{h}{x}, \quad \tan 60° = \frac{h+20}{x} $$

Solving: $$ x = \frac{20}{\sqrt{3}-1} \text{ m} $$

2. Two Positions on Opposite Sides:

Observer takes measurements from two points on opposite sides of the object.

Example:

From two points A and B on opposite sides of a tower, the angles of elevation are 30° and 45° respectively. If AB = 100 m, find tower height.

Let height = h, distances = x and 100-x

$$ \tan 30° = \frac{h}{x}, \quad \tan 45° = \frac{h}{100-x} $$

Solving: $$ h = \frac{100}{\sqrt{3}+1} \text{ m} $$

Notes: In two-position problems, create two equations and solve them simultaneously. Pay attention to whether the positions are on the same side or opposite sides.

Moving Observer Problems

1. Horizontal Movement Problems:

Observer moves horizontally toward or away from the object.

Example:

A person walking toward a tower observes the angle of elevation changes from 30° to 60° after walking 40 m. Find tower height.

Let initial distance = x, height = h

$$ \tan 30° = \frac{h}{x}, \quad \tan 60° = \frac{h}{x-40} $$

Solving: $$ h = 20\sqrt{3} \text{ m} $$

2. Vertical Movement Problems:

Observer moves vertically (e.g., in an elevator or climbing).

Example:

From the top of a 50 m building, the angle of depression of a car is 45°. After the observer climbs 10 m higher, the angle becomes 30°. Find the car's distance from building.

Let distance = x

$$ \tan 45° = \frac{50}{x}, \quad \tan 30° = \frac{60}{x} $$

Solving: $$ x = 50 \text{ m} $$

Notes: In moving observer problems, track the change in position carefully. The distance moved becomes a key parameter in setting up equations.

Two Objects Problems

1. Two Objects in Same Plane:

Finding relationship between heights/distances of two objects.

Example:

The angles of elevation of two towers from a point between them are 60° and 30°. If the towers are 100 m apart and one is taller than the other, find their heights.

Let distances be x and 100-x

$$ h_1 = x\tan 60°, \quad h_2 = (100-x)\tan 30° $$

2. Objects in Different Planes:

Objects at different heights or positions.

Example:

From the top of a tower, the angles of depression of two objects on the same side are 45° and 30°. If the objects are 100 m apart, find tower height.

Let height = h, distances = x and x+100

$$ \tan 45° = \frac{h}{x}, \quad \tan 30° = \frac{h}{x+100} $$

Notes: In two-object problems, you'll typically need to create equations for each object and find relationships between them.

Shadow Problems

Shadow Length Problems:

These involve the relationship between an object's height, its shadow length, and the sun's angle of elevation.

Example:

If the length of the shadow of a tower is increasing at 2 m/s when the sun's elevation is 45°, find the rate at which the angle of elevation is changing.

Let height = h, shadow length = x, angle = θ

$$ \tan \theta = \frac{h}{x} \Rightarrow \sec^2 \theta \cdot \frac{d\theta}{dt} = -\frac{h}{x^2} \cdot \frac{dx}{dt} $$

Rate of Change Problems:

These involve differentiation and related rates.

Example:

A man 2 m tall walks away from a lamp post 5 m high at 1.5 m/s. Find the rate at which his shadow length increases.

Using similar triangles and differentiation.

Notes: Shadow problems often involve similar triangles and may require calculus for rate of change problems.

Problem Solving Strategy

Systematic Approach to Height and Distance Problems:

  1. Draw a clear diagram showing all given information
  2. Identify right-angled triangles in the diagram
  3. Label all known and unknown quantities
  4. Choose appropriate trigonometric ratios based on given information
  5. Set up equations using trigonometric relationships
  6. Solve the equations systematically
  7. Verify your answer makes sense in the context

Common Mistakes to Avoid:

  • Forgetting to account for observer's height
  • Confusing angle of elevation with angle of depression
  • Using wrong trigonometric ratios
  • Not converting angles to radians when required
  • Forgetting to include units in final answer

Final Tip: Practice drawing clear diagrams and visualizing the scenarios. This is the most important skill for solving height and distance problems efficiently in JEE examinations.

Straight Lines - Coordinate Geometry

Straight Lines are fundamental concepts in coordinate geometry that represent the simplest form of geometric figures. They play a crucial role in JEE Mathematics with applications in various domains.

Basic Forms of Straight Lines:

  • General Form: $$ Ax + By + C = 0 $$
  • Slope-Intercept Form: $$ y = mx + c $$
  • Point-Slope Form: $$ y - y_1 = m(x - x_1) $$
  • Two-Point Form: $$ \frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1} $$
  • Intercept Form: $$ \frac{x}{a} + \frac{y}{b} = 1 $$
  • Normal Form: $$ x\cos\alpha + y\sin\alpha = p $$

Note: Straight lines form the foundation for more complex coordinate geometry topics. Mastery of line equations and their properties is essential for JEE success.

Slope of a Line

The slope (m) of a line measures its steepness and direction.

Formulas for Slope:

  • Using two points $(x_1, y_1)$ and $(x_2, y_2)$: $$ m = \frac{y_2 - y_1}{x_2 - x_1} $$
  • Angle with x-axis: $$ m = \tan\theta $$
  • From general equation $Ax + By + C = 0$: $$ m = -\frac{A}{B} $$
  • From intercept form: $$ m = -\frac{b}{a} $$

Special Cases:

  • Horizontal line: $m = 0$
  • Vertical line: $m = \infty$ (undefined)
  • Lines parallel to x-axis: $m = 0$
  • Lines parallel to y-axis: $m = \infty$

Angle Between Two Lines

For two lines with slopes $m_1$ and $m_2$, the angle between them is given by:

$$ \tan\theta = \left| \frac{m_1 - m_2}{1 + m_1m_2} \right| $$

Special Cases:

  • Parallel Lines: $m_1 = m_2$ ⇒ $\theta = 0^\circ$
  • Perpendicular Lines: $m_1m_2 = -1$ ⇒ $\theta = 90^\circ$
  • If lines are $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$:

    Parallel if: $$ \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} $$

    Perpendicular if: $$ a_1a_2 + b_1b_2 = 0 $$

Distance Formulas

1. Distance Between Two Points:

$$ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} $$

2. Distance from a Point to a Line:

Distance from point $(x_1, y_1)$ to line $Ax + By + C = 0$:

$$ d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}} $$

3. Distance Between Parallel Lines:

Distance between $Ax + By + C_1 = 0$ and $Ax + By + C_2 = 0$:

$$ d = \frac{|C_1 - C_2|}{\sqrt{A^2 + B^2}} $$

Section Formulas

1. Internal Division:

Point dividing $(x_1, y_1)$ and $(x_2, y_2)$ in ratio m:n internally:

$$ P = \left( \frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n} \right) $$

2. External Division:

Point dividing $(x_1, y_1)$ and $(x_2, y_2)$ in ratio m:n externally:

$$ P = \left( \frac{mx_2 - nx_1}{m-n}, \frac{my_2 - ny_1}{m-n} \right) $$

3. Midpoint Formula:

Midpoint of $(x_1, y_1)$ and $(x_2, y_2)$:

$$ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) $$

Family of Lines

1. Family Through Intersection of Two Lines:

Lines through intersection of $L_1=0$ and $L_2=0$:

$$ L_1 + \lambda L_2 = 0 $$

2. Family of Parallel Lines:

Lines parallel to $Ax + By + C = 0$:

$$ Ax + By + k = 0 $$

3. Family of Perpendicular Lines:

Lines perpendicular to $Ax + By + C = 0$:

$$ Bx - Ay + k = 0 $$

Concurrency of Lines

Condition for Concurrency:

Three lines $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$, $a_3x + b_3y + c_3 = 0$ are concurrent if:

$$ \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0 $$

Point of Concurrency:

Solve any two equations simultaneously to find the point of intersection.

Reflection and Image

1. Reflection of a Point:

Reflection of point $(x_1, y_1)$ about line $ax + by + c = 0$:

$$ \frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{-2(ax_1 + by_1 + c)}{a^2 + b^2} $$

2. Foot of Perpendicular:

Foot of perpendicular from $(x_1, y_1)$ to line $ax + by + c = 0$:

$$ \frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{-(ax_1 + by_1 + c)}{a^2 + b^2} $$

Pair of Straight Lines

General Second Degree Equation:

$$ ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0 $$

Conditions:

  • Represents pair of lines if: $$ \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0 $$
  • Angle between lines: $$ \tan\theta = \frac{2\sqrt{h^2 - ab}}{a + b} $$
  • Lines are perpendicular if: $a + b = 0$
  • Lines are parallel if: $h^2 = ab$

Important Results and Formulas

1. Area of Triangle:

Area of triangle with vertices $(x_1, y_1)$, $(x_2, y_2)$, $(x_3, y_3)$:

$$ \Delta = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| $$

2. Collinearity of Points:

Three points are collinear if:

$$ \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0 $$

3. Centroid of Triangle:

$$ G = \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right) $$

Important: Practice all forms of line equations and their conversions. Straight lines frequently appear in JEE in combination with circles, parabolas, and other coordinate geometry topics.

Parabola - Conic Sections

A parabola is the set of all points in a plane that are equidistant from a fixed point (focus) and a fixed line (directrix). It is one of the four conic sections and has important applications in physics and engineering.

Standard Forms of Parabola:

  • Right Opening: $$ y^2 = 4ax $$
  • Left Opening: $$ y^2 = -4ax $$
  • Upward Opening: $$ x^2 = 4ay $$
  • Downward Opening: $$ x^2 = -4ay $$

Note: Parabola is a frequently tested topic in JEE with applications in coordinate geometry, calculus, and physics problems involving projectile motion.

Key Elements of Parabola

Important Elements (for y² = 4ax):

  • Focus: $S = (a, 0)$
  • Directrix: $x = -a$
  • Axis: x-axis ($y = 0$)
  • Vertex: $V = (0, 0)$
  • Length of Latus Rectum: $4a$
  • Endpoints of Latus Rectum: $L = (a, 2a)$, $L' = (a, -2a)$
  • Focal Distance: Distance from focus to any point on parabola

Parametric Coordinates:

  • For $y^2 = 4ax$: $$ x = at^2, \quad y = 2at $$
  • Parameter $t$ represents the slope of tangent at point $(at^2, 2at)$

Standard Equations and Properties

Equation Focus Directrix Axis Latus Rectum
$y^2 = 4ax$ $(a, 0)$ $x = -a$ $y = 0$ $4a$
$y^2 = -4ax$ $(-a, 0)$ $x = a$ $y = 0$ $4a$
$x^2 = 4ay$ $(0, a)$ $y = -a$ $x = 0$ $4a$
$x^2 = -4ay$ $(0, -a)$ $y = a$ $x = 0$ $4a$

Tangent to Parabola

Forms of Tangent:

  • Point Form: For $y^2 = 4ax$ at $(x_1, y_1)$: $$ yy_1 = 2a(x + x_1) $$
  • Parametric Form: For $y^2 = 4ax$ at $(at^2, 2at)$: $$ ty = x + at^2 $$
  • Slope Form: For $y^2 = 4ax$ with slope m: $$ y = mx + \frac{a}{m} $$

Condition of Tangency:

  • For $y^2 = 4ax$: Line $y = mx + c$ is tangent if $c = \frac{a}{m}$
  • For $x^2 = 4ay$: Line $y = mx + c$ is tangent if $c = -am^2$
  • Point of contact for $y = mx + \frac{a}{m}$ on $y^2 = 4ax$ is $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$

Normal to Parabola

Forms of Normal:

  • Point Form: For $y^2 = 4ax$ at $(x_1, y_1)$: $$ y - y_1 = -\frac{y_1}{2a}(x - x_1) $$
  • Parametric Form: For $y^2 = 4ax$ at $(at^2, 2at)$: $$ y = tx - 2at - at^3 $$
  • Slope Form: For $y^2 = 4ax$ with slope m: $$ y = mx - 2am - am^3 $$

Important Properties:

  • Three normals can be drawn from a point to a parabola
  • The algebraic sum of slopes of three concurrent normals is zero
  • The algebraic sum of ordinates of feet of three concurrent normals is zero

Chord of Parabola

Forms of Chord:

  • Chord with given midpoint $(x_1, y_1)$: $$ T = S_1 $$ $$ yy_1 - 2a(x + x_1) = y_1^2 - 4ax_1 $$
  • Chord joining $P(t_1)$ and $Q(t_2)$: $$ (t_1 + t_2)y = 2x + 2at_1t_2 $$
  • Focal Chord: Chord passing through focus $$ t_1t_2 = -1 $$

Special Chords:

  • Focal Chord: Passes through focus, $t_1t_2 = -1$
  • Chord of Contact: From external point $(x_1, y_1)$: $$ yy_1 = 2a(x + x_1) $$
  • Equation of Chord with midpoint $(h,k)$: $$ T = S_1 $$

Director Circle and Diameter

Director Circle:

For parabola $y^2 = 4ax$, the director circle is:

$$ x + a = 0 $$

(The directrix itself serves as the director circle)

Diameter of Parabola:

Locus of midpoints of parallel chords of slope m:

$$ y = \frac{2a}{m} $$

This is a line parallel to the axis of the parabola

Reflection Property and Applications

Reflection Property:

Any ray parallel to the axis of parabola after reflection passes through the focus, and vice versa.

This property is used in:

  • Satellite dishes
  • Headlights of vehicles
  • Telescopes
  • Solar cookers

Parametric Coordinates for other forms:

  • $y^2 = -4ax$: $x = -at^2$, $y = 2at$
  • $x^2 = 4ay$: $x = 2at$, $y = at^2$
  • $x^2 = -4ay$: $x = 2at$, $y = -at^2$

Important Results and Formulas

1. Distance Formulas:

  • Focal distance of point $P(x_1, y_1)$ on $y^2 = 4ax$: $$ PS = x_1 + a $$
  • Distance of point from directrix = $x_1 + a$
  • For any point on parabola: Distance from focus = Distance from directrix

2. Chord Properties:

  • Length of focal chord with parameter t: $$ L = a\left(t + \frac{1}{t}\right)^2 $$
  • Length of chord with midpoint $(x_1, y_1)$: $$ L = \frac{2}{a}\sqrt{(y_1^2 - 4ax_1)(y_1^2 + 4a^2)} $$

3. Tangent Properties:

  • Angle between tangents at $t_1$ and $t_2$: $$ \tan\theta = \left|\frac{t_1 - t_2}{1 + t_1t_2}\right| $$
  • For perpendicular tangents: $t_1t_2 = -1$
  • Point of intersection of tangents at $t_1$ and $t_2$: $$ [at_1t_2, a(t_1 + t_2)] $$

Important: Practice all forms of parabola equations and their conversions. Focus on tangent, normal, and chord properties as they are frequently tested in JEE. Remember the reflection property for application-based problems.

Vectors - Mathematics

Vectors are mathematical quantities that have both magnitude and direction. They are fundamental in physics and engineering for representing physical quantities like force, velocity, and displacement.

Basic Definitions:

  • Scalar: Quantity with only magnitude (mass, temperature)
  • Vector: Quantity with both magnitude and direction (force, velocity)
  • Position Vector: $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$
  • Unit Vector: Vector with magnitude 1: $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$
  • Null Vector: Vector with zero magnitude

Note: Vectors are crucial for JEE Mathematics and Physics. They form the foundation for 3D geometry, mechanics, and electromagnetic theory.

Vector Algebra Operations

1. Vector Addition and Subtraction:

  • Triangle Law: $\vec{a} + \vec{b} = \vec{c}$
  • Parallelogram Law: $\vec{a} + \vec{b} =$ diagonal
  • Component-wise: $$ \vec{a} \pm \vec{b} = (a_x \pm b_x)\hat{i} + (a_y \pm b_y)\hat{j} + (a_z \pm b_z)\hat{k} $$

2. Scalar Multiplication:

$$ k\vec{a} = ka_x\hat{i} + ka_y\hat{j} + ka_z\hat{k} $$

Magnitude: $|k\vec{a}| = |k||\vec{a}|$

3. Properties of Vector Addition:

  • Commutative: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
  • Associative: $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$
  • Additive Identity: $\vec{a} + \vec{0} = \vec{a}$
  • Additive Inverse: $\vec{a} + (-\vec{a}) = \vec{0}$

Dot Product (Scalar Product)

Definition:

$$ \vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta $$

where $\theta$ is the angle between $\vec{a}$ and $\vec{b}$

Component Form:

$$ \vec{a} \cdot \vec{b} = a_xb_x + a_yb_y + a_zb_z $$

Properties of Dot Product:

  • Commutative: $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
  • Distributive: $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$
  • $\vec{a} \cdot \vec{a} = |\vec{a}|^2$
  • $\vec{a} \cdot \vec{b} = 0$ if $\vec{a} \perp \vec{b}$ (and neither is null vector)
  • Angle between vectors: $\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$

Applications:

  • Work done: $W = \vec{F} \cdot \vec{d}$
  • Projection of $\vec{a}$ on $\vec{b}$: $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
  • Component of $\vec{a}$ along $\vec{b}$: $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}\right)\vec{b}$

Cross Product (Vector Product)

Definition:

$$ \vec{a} \times \vec{b} = |\vec{a}||\vec{b}|\sin\theta\ \hat{n} $$

where $\hat{n}$ is unit vector perpendicular to both $\vec{a}$ and $\vec{b}$ (right-hand rule)

Component Form:

$$ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} $$

Properties of Cross Product:

  • Anti-commutative: $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
  • Distributive: $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$
  • $\vec{a} \times \vec{a} = \vec{0}$
  • $\vec{a} \times \vec{b} = \vec{0}$ if $\vec{a} \parallel \vec{b}$ (and neither is null vector)
  • Magnitude: $|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin\theta$
  • Area of parallelogram = $|\vec{a} \times \vec{b}|$
  • Area of triangle = $\frac{1}{2}|\vec{a} \times \vec{b}|$

Scalar Triple Product

Definition:

$$ [\vec{a}\ \vec{b}\ \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}) $$

Component Form:

$$ [\vec{a}\ \vec{b}\ \vec{c}] = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} $$

Properties:

  • Cyclic property: $[\vec{a}\ \vec{b}\ \vec{c}] = [\vec{b}\ \vec{c}\ \vec{a}] = [\vec{c}\ \vec{a}\ \vec{b}]$
  • Anti-cyclic: $[\vec{a}\ \vec{b}\ \vec{c}] = -[\vec{a}\ \vec{c}\ \vec{b}]$
  • If any two vectors are equal: $[\vec{a}\ \vec{b}\ \vec{c}] = 0$
  • If vectors are coplanar: $[\vec{a}\ \vec{b}\ \vec{c}] = 0$
  • Volume of parallelepiped = $|[\vec{a}\ \vec{b}\ \vec{c}]|$
  • Volume of tetrahedron = $\frac{1}{6}|[\vec{a}\ \vec{b}\ \vec{c}]|$

Vector Triple Product

Definition:

$$ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} $$

Important Results:

  • $\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$ (Not associative)
  • Lagrange's Identity: $$ (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d}) - (\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c}) $$
  • Jacobi Identity: $$ \vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = \vec{0} $$

Position Vectors and Geometry

1. Section Formula:

  • Internal division (m:n): $$ \vec{r} = \frac{m\vec{b} + n\vec{a}}{m + n} $$
  • External division (m:n): $$ \vec{r} = \frac{m\vec{b} - n\vec{a}}{m - n} $$
  • Midpoint: $$ \vec{r} = \frac{\vec{a} + \vec{b}}{2} $$

2. Centroid of Triangle:

$$ \vec{G} = \frac{\vec{a} + \vec{b} + \vec{c}}{3} $$

3. Important Points in Triangle:

  • Incenter: $\vec{I} = \frac{a\vec{A} + b\vec{B} + c\vec{C}}{a + b + c}$
  • Circumcenter: $\vec{O} = \frac{\sin 2A\ \vec{A} + \sin 2B\ \vec{B} + \sin 2C\ \vec{C}}{\sin 2A + \sin 2B + \sin 2C}$
  • Orthocenter: $\vec{H} = \frac{\tan A\ \vec{A} + \tan B\ \vec{B} + \tan C\ \vec{C}}{\tan A + \tan B + \tan C}$

Line and Plane in Vector Form

1. Equation of Line:

  • Vector form: $\vec{r} = \vec{a} + \lambda\vec{b}$
  • Parametric form: $x = a_1 + \lambda b_1$, $y = a_2 + \lambda b_2$, $z = a_3 + \lambda b_3$
  • Cartesian form: $\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$
  • Through two points: $\vec{r} = \vec{a} + \lambda(\vec{b} - \vec{a})$

2. Equation of Plane:

  • Normal form: $\vec{r} \cdot \hat{n} = d$
  • Through point with normal: $(\vec{r} - \vec{a}) \cdot \vec{n} = 0$
  • Through three points: $[\vec{r} - \vec{a}\ \vec{b} - \vec{a}\ \vec{c} - \vec{a}] = 0$
  • Parametric form: $\vec{r} = \vec{a} + \lambda\vec{b} + \mu\vec{c}$

Important Vector Identities

Basic Vector Identities:

  • $(\vec{a} + \vec{b})^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b}$
  • $(\vec{a} - \vec{b})^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b}$
  • $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = |\vec{a}|^2 - |\vec{b}|^2$
  • $|\vec{a} + \vec{b}|^2 + |\vec{a} - \vec{b}|^2 = 2(|\vec{a}|^2 + |\vec{b}|^2)$ (Parallelogram Law)
  • $|\vec{a} + \vec{b}|^2 - |\vec{a} - \vec{b}|^2 = 4\vec{a} \cdot \vec{b}$

Advanced Vector Identities:

  • $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$
  • $(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{b} \cdot \vec{c})\vec{a}$
  • $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d}) - (\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c})$
  • $\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = \vec{0}$

Important: Practice all vector operations and identities thoroughly. Vectors are extensively used in 3D geometry, mechanics, and electromagnetic theory in JEE. Focus on geometric interpretations of dot and cross products.

Probability - Mathematics

Probability is the branch of mathematics that deals with the study of random events and the likelihood of their occurrence. It quantifies uncertainty and is fundamental in statistics, data science, and decision-making.

Basic Definitions:

  • Random Experiment: An experiment with uncertain outcomes
  • Sample Space (S): Set of all possible outcomes
  • Event (E): Subset of sample space
  • Probability of Event E: $P(E) = \frac{\text{Favorable outcomes}}{\text{Total outcomes}}$
  • Sure Event: $P(S) = 1$
  • Impossible Event: $P(\phi) = 0$

Note: Probability is a high-weightage topic in JEE with applications in combinatorics, statistics, and real-world problem solving.

Types of Events

Classification of Events:

  • Equally Likely Events: Events with same probability
  • Mutually Exclusive Events: $A \cap B = \phi$
  • Exhaustive Events: $A_1 \cup A_2 \cup \dots \cup A_n = S$
  • Independent Events: $P(A \cap B) = P(A)P(B)$
  • Complementary Events: $A$ and $A'$ where $A \cup A' = S$

Algebra of Events:

  • $A \cup B$: Either A or B or both occur
  • $A \cap B$: Both A and B occur
  • $A'$ or $A^c$: A does not occur
  • $A - B$: A occurs but B does not
  • $A \Delta B$: Exactly one of A or B occurs

Basic Probability Theorems

1. Addition Theorem:

  • For any two events A and B: $$ P(A \cup B) = P(A) + P(B) - P(A \cap B) $$
  • For mutually exclusive events: $$ P(A \cup B) = P(A) + P(B) $$
  • For three events A, B, C: $$ P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C) $$

2. Complementary Probability:

$$ P(A') = 1 - P(A) $$

3. Boole's Inequality:

$$ P\left(\bigcup_{i=1}^n A_i\right) \leq \sum_{i=1}^n P(A_i) $$

Conditional Probability

Definition:

$$ P(A|B) = \frac{P(A \cap B)}{P(B)},\quad \text{where } P(B) > 0 $$

Probability of A given that B has occurred

Properties of Conditional Probability:

  • $0 \leq P(A|B) \leq 1$
  • $P(S|B) = 1$
  • $P(A_1 \cup A_2|B) = P(A_1|B) + P(A_2|B) - P(A_1 \cap A_2|B)$
  • $P(A'|B) = 1 - P(A|B)$

Multiplication Theorem:

$$ P(A \cap B) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B) $$

For n events: $$ P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_1 \cap A_2) \cdots P(A_n|A_1 \cap A_2 \cap \dots \cap A_{n-1}) $$

Independent Events

Definition:

Two events A and B are independent if:

$$ P(A \cap B) = P(A) \cdot P(B) $$

This implies $P(A|B) = P(A)$ and $P(B|A) = P(B)$

Properties of Independent Events:

  • If A and B are independent, then:
    • A and B' are independent
    • A' and B are independent
    • A' and B' are independent
  • Three events A, B, C are mutually independent if:
    • $P(A \cap B) = P(A)P(B)$
    • $P(B \cap C) = P(B)P(C)$
    • $P(C \cap A) = P(C)P(A)$
    • $P(A \cap B \cap C) = P(A)P(B)P(C)$

Pairwise vs Mutual Independence:

Pairwise independence does not imply mutual independence. Three events can be pairwise independent but not mutually independent.

Total Probability Theorem

Theorem:

Let $B_1, B_2, \dots, B_n$ be mutually exclusive and exhaustive events, then for any event A:

$$ P(A) = \sum_{i=1}^n P(B_i) \cdot P(A|B_i) $$

Bayes' Theorem:

$$ P(B_i|A) = \frac{P(B_i) \cdot P(A|B_i)}{\sum_{j=1}^n P(B_j) \cdot P(A|B_j)} $$

Where $B_1, B_2, \dots, B_n$ are mutually exclusive and exhaustive events.

Applications:

  • Medical diagnosis
  • Quality control
  • Spam filtering
  • Risk assessment

Random Variables and Probability Distributions

Random Variable:

A function that assigns a real number to each outcome in sample space.

  • Discrete Random Variable: Takes finite or countable values
  • Continuous Random Variable: Takes uncountable values

Probability Distribution:

  • For discrete RV X with values $x_1, x_2, \dots, x_n$:
    • $P(X = x_i) = p_i$
    • $\sum p_i = 1$
    • $0 \leq p_i \leq 1$
  • For continuous RV X:
    • Probability density function $f(x)$
    • $\int_{-\infty}^{\infty} f(x)dx = 1$
    • $P(a \leq X \leq b) = \int_a^b f(x)dx$

Mathematical Expectation

Expectation (Mean):

  • For discrete RV: $$ E(X) = \sum x_i p_i $$
  • For continuous RV: $$ E(X) = \int_{-\infty}^{\infty} x f(x)dx $$
  • Properties:
    • $E(aX + b) = aE(X) + b$
    • $E(X + Y) = E(X) + E(Y)$
    • If X and Y independent: $E(XY) = E(X)E(Y)$

Variance:

$$ Var(X) = E(X^2) - [E(X)]^2 $$

Properties:

  • $Var(aX + b) = a^2 Var(X)$
  • $Var(X + Y) = Var(X) + Var(Y) + 2Cov(X,Y)$
  • If X and Y independent: $Var(X + Y) = Var(X) + Var(Y)$

Standard Deviation:

$$ \sigma = \sqrt{Var(X)} $$

Important Probability Distributions

1. Binomial Distribution:

For n independent Bernoulli trials with success probability p:

$$ P(X = r) = ^nC_r p^r q^{n-r},\quad q = 1-p $$
  • $E(X) = np$
  • $Var(X) = npq$
  • Mode: Integer between $(n+1)p - 1$ and $(n+1)p$

2. Poisson Distribution:

$$ P(X = r) = \frac{e^{-\lambda} \lambda^r}{r!} $$
  • $E(X) = \lambda$
  • $Var(X) = \lambda$
  • Used for rare events

3. Normal Distribution:

$$ f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} $$
  • $E(X) = \mu$
  • $Var(X) = \sigma^2$
  • Bell-shaped curve

Important Results and Formulas

1. Combinatorial Probability:

  • Probability = $\frac{\text{Favorable cases}}{\text{Total cases}}$
  • Use permutations and combinations for counting
  • For equally likely outcomes

2. Odds in Favor and Against:

  • Odds in favor = $\frac{P(E)}{P(E')}$
  • Odds against = $\frac{P(E')}{P(E)}$
  • If odds in favor are a:b, then $P(E) = \frac{a}{a+b}$

3. Important Inequalities:

  • $P(A \cap B) \leq \min(P(A), P(B))$
  • $P(A \cup B) \geq \max(P(A), P(B))$
  • $|P(A) - P(B)| \leq P(A \Delta B)$

Important: Practice problems on conditional probability, Bayes' theorem, and probability distributions extensively. These are frequently tested in JEE. Understand the difference between independent and mutually exclusive events clearly.

Select a topic from above to view complete study material with theory, formulas, and solved examples.