Back to Physics Topics
Formula Sheet Last-Minute Revision 25+ Essential Formulas

Modern Physics Formula Sheet: The Last-Minute Revision Guide for JEE

All essential formulas, constants, and definitions from Modern Physics unit - perfectly organized for quick revision.

12-15
Questions in JEE
25+
Key Formulas
5
Main Topics
100%
JEE Covered

Essential Physical Constants

Speed of light
$c = 3 \times 10^8 \text{m/s}$
Planck's constant
$h = 6.63 \times 10^{-34} \text{J·s}$
Electron charge
$e = 1.6 \times 10^{-19} \text{C}$
Electron mass
$m_e = 9.1 \times 10^{-31} \text{kg}$
Proton mass
$m_p = 1.67 \times 10^{-27} \text{kg}$
Boltzmann constant
$k = 1.38 \times 10^{-23} \text{J/K}$
Rydberg constant
$R = 1.097 \times 10^7 \text{m}^{-1}$
Avogadro's number
$N_A = 6.022 \times 10^{23} \text{mol}^{-1}$
Atomic mass unit
$1 \text{u} = 931.5 \text{MeV/c}^2$

1. Photoelectric Effect

Energy of Photon

$$E = h\nu = \frac{hc}{\lambda}$$

where $\nu$ = frequency, $\lambda$ = wavelength

Einstein's Photoelectric Equation

$$h\nu = \phi + K_{max}$$

$\phi$ = work function, $K_{max}$ = maximum kinetic energy

Cut-off Frequency

$$\nu_0 = \frac{\phi}{h}$$

Minimum frequency for photoemission

Stopping Potential

$$eV_0 = K_{max} = h\nu - \phi$$

$V_0$ = stopping potential

Maximum Kinetic Energy

$$K_{max} = h(\nu - \nu_0)$$

When $\nu > \nu_0$

Photocurrent

$$I \propto \text{Intensity}$$

Independent of frequency

🎯 Key Points to Remember

  • Photoelectric effect demonstrates particle nature of light
  • Maximum KE depends on frequency, not intensity
  • Photocurrent depends on intensity, not frequency
  • No time lag between illumination and emission

2. Atomic Physics

Bohr's Postulates

$$mvr = \frac{nh}{2\pi}$$

Angular momentum quantization

Radius of nth Orbit

$$r_n = \frac{n^2h^2}{4\pi^2kZe^2m}$$

For hydrogen: $r_n = 0.529 \text{Å} \times n^2$

Velocity in nth Orbit

$$v_n = \frac{2\pi ke^2}{nh}$$

For hydrogen: $v_n = \frac{2.18 \times 10^6}{n} \text{m/s}$

Energy of nth Orbit

$$E_n = -\frac{2\pi^2k^2Z^2e^4m}{n^2h^2}$$

For hydrogen: $E_n = -\frac{13.6}{n^2} \text{eV}$

Rydberg Formula

$$\frac{1}{\lambda} = RZ^2\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

For hydrogen-like atoms

Photon Energy in Transition

$$\Delta E = E_2 - E_1 = h\nu$$

Energy of emitted/absorbed photon

3. Nuclear Physics

Nuclear Size

$$R = R_0A^{1/3}$$

$R_0 = 1.2 \text{fm}$, A = mass number

Binding Energy

$$BE = [Zm_p + (A-Z)m_n - M]c^2$$

M = mass of nucleus

Binding Energy per Nucleon

$$\frac{BE}{A} = \frac{[Zm_p + (A-Z)m_n - M]c^2}{A}$$

Maximum for iron (Fe-56)

Radioactive Decay Law

$$N = N_0e^{-\lambda t}$$

$\lambda$ = decay constant

Half-life

$$T_{1/2} = \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda}$$

Time for half the nuclei to decay

Activity

$$A = \lambda N = A_0e^{-\lambda t}$$

Decays per second

🎯 Nuclear Reactions

Fission:

$^{235}_{92}U + ^1_0n \rightarrow ^{141}_{56}Ba + ^{92}_{36}Kr + 3^1_0n + Q$

Fusion:

$^2_1H + ^3_1H \rightarrow ^4_2He + ^1_0n + 17.6 \text{MeV}$

4. Semiconductor Devices

Electrical Conductivity

$$\sigma = e(n_e\mu_e + n_h\mu_h)$$

$n$ = carrier concentration, $\mu$ = mobility

Resistivity

$$\rho = \frac{1}{\sigma}$$

Inverse of conductivity

Diode Current

$$I = I_0(e^{eV/kT} - 1)$$

$I_0$ = reverse saturation current

Energy Gap

$$E_g = E_c - E_v$$

Conduction band - Valence band

Intrinsic Carrier Concentration

$$n_i^2 = n_e n_h$$

For intrinsic semiconductors

Transistor Current Gain

$$\beta = \frac{I_c}{I_b}$$

Common emitter configuration

5. Wave-Particle Duality & X-rays

de Broglie Wavelength

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

For massive particles

For accelerated electron

$$\lambda = \frac{12.27}{\sqrt{V}} \text{Å}$$

V in volts

Heisenberg Uncertainty Principle

$$\Delta x \cdot \Delta p \geq \frac{h}{4\pi}$$

Position-momentum uncertainty

X-ray Minimum Wavelength

$$\lambda_{min} = \frac{hc}{eV}$$

V = accelerating voltage

Bragg's Law

$$2d\sin\theta = n\lambda$$

d = interplanar spacing

Moseley's Law

$$\sqrt{\nu} = a(Z - b)$$

For characteristic X-rays

🚀 Last-Minute Revision Strategy

High-Yield Formulas

  • Photoelectric effect: $K_{max} = h\nu - \phi$
  • Bohr model: $E_n = -13.6/n^2 \text{eV}$
  • Radioactive decay: $N = N_0e^{-\lambda t}$
  • de Broglie: $\lambda = h/p$
  • Stopping potential: $eV_0 = K_{max}$

Common Mistakes to Avoid

  • Confusing work function with threshold frequency
  • Mixing up fission and fusion reactions
  • Forgetting units conversion (eV to Joules)
  • Not remembering constants (h, c, e, m_e)
  • Confusing n-type and p-type semiconductors

🧠 Memory Aids & Mnemonics

Photoelectric Effect

"Keep Every Photon For Work"

$K_{max} = E_{photon} - \phi_{work}$

Radioactive Decay

"Never Expect Long Time"

$N = N_0e^{-\lambda t}$

Bohr's Model

"Radius Varies with , Energy with 1/n²"

$r_n \propto n^2$, $E_n \propto 1/n^2$

de Broglie

"Long Wavelength for Slow Particles"

$\lambda = h/p$

You're Ready for Modern Physics!

You now have all the essential formulas at your fingertips. Practice applying them!

More Physics Topics