Trigonometric Integrals Demystified for JEE
Master the essential patterns and techniques for solving trigonometric integrals in JEE Main and Advanced with step-by-step approaches.
Why Trigonometric Integrals Matter in JEE
Trigonometric integrals appear in 2-3 questions per JEE paper, making them crucial for scoring. Based on analysis of past 10 years papers, these 8 patterns cover 95% of all trigonometric integration problems:
- Basic sin/cos integrals - Foundation for complex problems
- Powers of sin and cos - Using reduction formulas
- Products of trig functions - Product-to-sum identities
- Trigonometric substitutions - For $\sqrt{a^2 - x^2}$ type integrals
- Special techniques - Weierstrass substitution, etc.
Essential Trigonometric Integration Formulas
Basic Integrals
Squares of Trig Functions
Integrals of sinmx cosnx
Evaluate $\int \sin^3 x \cos^2 x dx$
Solution Approach:
Step 1: When power of sin is odd, save one sin x and convert rest to cos:
$\int \sin^3 x \cos^2 x dx = \int \sin^2 x \cos^2 x \sin x dx$
Step 2: Use identity: $\sin^2 x = 1 - \cos^2 x$
$= \int (1 - \cos^2 x) \cos^2 x \sin x dx$
Step 3: Substitute $u = \cos x$, $du = -\sin x dx$:
$= -\int (1 - u^2) u^2 du = -\int (u^2 - u^4) du$
Step 4: Integrate: $= -\left(\frac{u^3}{3} - \frac{u^5}{5}\right) + C$
Step 5: Back substitute: $= -\frac{\cos^3 x}{3} + \frac{\cos^5 x}{5} + C$
Products using Product-to-Sum Formulas
Evaluate $\int \sin 3x \cos 2x dx$
Solution Approach:
Step 1: Use product-to-sum identity:
$\sin A \cos B = \frac{1}{2}[\sin(A+B) + \sin(A-B)]$
Step 2: Apply to our integral:
$\int \sin 3x \cos 2x dx = \frac{1}{2} \int [\sin 5x + \sin x] dx$
Step 3: Integrate term by term:
$= \frac{1}{2} \left[-\frac{\cos 5x}{5} - \cos x\right] + C$
Step 4: Final answer: $= -\frac{\cos 5x}{10} - \frac{\cos x}{2} + C$
Trigonometric Substitution
Evaluate $\int \frac{dx}{\sqrt{4 - x^2}}$ using trigonometric substitution
Solution Approach:
Step 1: Recognize form $\sqrt{a^2 - x^2}$, use $x = a\sin\theta$
Let $x = 2\sin\theta$, then $dx = 2\cos\theta d\theta$
Step 2: Substitute into integral:
$\int \frac{dx}{\sqrt{4 - x^2}} = \int \frac{2\cos\theta d\theta}{\sqrt{4 - 4\sin^2\theta}}$
Step 3: Simplify: $= \int \frac{2\cos\theta d\theta}{2\cos\theta} = \int d\theta$
Step 4: Integrate: $= \theta + C$
Step 5: Back substitute: $\theta = \sin^{-1}\left(\frac{x}{2}\right)$
Step 6: Final answer: $= \sin^{-1}\left(\frac{x}{2}\right) + C$
🚀 Quick Solving Strategies
For sinmx cosnx:
- If m is odd: save one sin x, convert rest to cos
- If n is odd: save one cos x, convert rest to sin
- If both even: use power-reducing formulas
- If both odd: choose the smaller power
Special Techniques:
- Use trig identities to simplify
- Product-to-sum for products of different angles
- Weierstrass substitution for rational trig functions
- Recognize standard forms for quick solutions
Patterns 4-8 Available in Full Version
Includes 5 more essential trigonometric integration patterns with detailed solutions and JEE-level problems
📝 Quick Self-Test
Try these JEE-level problems to test your understanding:
1. Evaluate $\int \sin^4 x \cos^3 x dx$
2. Evaluate $\int \frac{dx}{1 + \sin x}$
3. Evaluate $\int \sqrt{9 - x^2} dx$ using trig substitution
Ready to Master All 8 Patterns?
Get complete access to all patterns with step-by-step video solutions and practice problems