Back to Calculus Topics
JEE Mains & Advanced Reading Time: 12 min 6 Key Patterns

The Modulus Function |x|: How it Transforms Domain & Range in JEE Problems

Master how |f(x)| affects domain and range - the most frequently tested modulus concept in JEE Main & Advanced.

85%
JEE Papers
6
Key Patterns
3
Difficulty Levels
15min
Avg. Solve Time

Why Modulus Function is Crucial for JEE

The modulus function $|x|$ appears in 85% of JEE papers and transforms range in predictable ways. Understanding these patterns can help you solve complex problems in seconds.

🎯 Key Insight:

$|f(x)|$ always makes the range non-negative. If original range was $[a, b]$, then range of $|f(x)|$ becomes $[0, \max(|a|, |b|)]$ when the range spans both positive and negative values.

Pattern 1 Easy

Basic Modulus Transformation

If $f(x)$ has range $R$, what is the range of $|f(x)|$?

Transformation Rule:

Case 1: If $R \subseteq [0, \infty)$ → Range remains same: $R$

Case 2: If $R \subseteq (-\infty, 0]$ → Range becomes $[0, \max(|x|)]$ where $x \in R$

Case 3: If $R$ spans both positive and negative → Range becomes $[0, M]$ where $M = \max(|min(R)|, |max(R)|)$

Example:

If $f(x) = \sin x$ has range $[-1, 1]$, then $|f(x)| = |\sin x|$ has range $[0, 1]$

Pattern 2 Medium

Modulus Inside Square Root

Find domain and range of $f(x) = \sqrt{|x| - 2}$

Solution Approach:

Step 1: Domain condition: $|x| - 2 \geq 0$ ⇒ $|x| \geq 2$

Step 2: Domain: $x \leq -2$ or $x \geq 2$

Step 3: For range: $|x| - 2 \geq 0$, so $\sqrt{|x| - 2} \geq 0$

Step 4: As $|x| \to \infty$, $f(x) \to \infty$

Step 5: Minimum at $|x| = 2$: $f(x) = 0$

Step 6: Range: $[0, \infty)$

Pattern 3 Hard

Composite Modulus Function

Find range of $f(x) = ||x - 2| - 3|$

Solution Approach:

Step 1: Let $g(x) = |x - 2| - 3$

Step 2: Range of $|x - 2|$ is $[0, \infty)$

Step 3: Range of $g(x)$ is $[-3, \infty)$

Step 4: Apply outer modulus: $|g(x)|$ has range $[0, \infty)$

Alternative Graphical Method:

• Graph shifts right by 2 units: $|x-2|$

• Shifts down by 3 units: $|x-2|-3$

• Reflect negative part upward: $||x-2|-3|$

Final Range: $[0, \infty)$

🚀 Modulus Function Quick Strategies

Domain Transformations:

  • $|f(x)|$ has same domain as $f(x)$
  • $\sqrt{|f(x)|}$ requires $|f(x)| \geq 0$ (always true)
  • $\frac{1}{|f(x)|}$ requires $f(x) \neq 0$
  • $\log|f(x)|$ requires $|f(x)| > 0$ ⇒ $f(x) \neq 0$

Range Transformations:

  • $|f(x)| ≥ 0$ always
  • If $f(x)$ range is $[a,b]$, then $|f(x)|$ range is $[0, \max(|a|,|b|)]$
  • $|f(x)|$ creates V-shaped graphs
  • Piecewise definition helps in complex cases
Pattern 4 Medium

Modulus in Rational Functions

Find domain and range of $f(x) = \frac{1}{|x| - 1}$

Solution Approach:

Step 1: Domain: Denominator ≠ 0 ⇒ $|x| - 1 \neq 0$ ⇒ $|x| \neq 1$ ⇒ $x \neq \pm1$

Step 2: Domain: $\mathbb{R} - \{-1, 1\}$

Step 3: For range, analyze cases:

• When $|x| > 1$: $|x|-1 > 0$, so $f(x) > 0$

• When $0 \leq |x| < 1$: $|x|-1 < 0$, so $f(x) < 0$

Step 4: As $|x| \to 1^+$, $f(x) \to +\infty$

Step 5: As $|x| \to 1^-$, $f(x) \to -\infty$

Step 6: As $|x| \to \infty$, $f(x) \to 0$

Step 7: Range: $(-\infty, 0) \cup (0, \infty)$

Patterns 5-6 Available in Full Version

Includes Modulus in Trigonometric Functions and Modulus in Inverse Trigonometric Functions with JEE Advanced level problems

📝 Quick Self-Test

Try these modulus function problems to test your understanding:

1. Find range of $f(x) = |x^2 - 4x + 3|$

2. Find domain of $f(x) = \sqrt{4 - |x|}$

3. Find range of $f(x) = \frac{|x|}{x^2 + 1}$

📚 Essential Modulus Formulas

Basic Properties:

  • $|x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases}$
  • $|x| \geq 0$ for all real $x$
  • $|x| = |-x|$
  • $\sqrt{x^2} = |x|$

Inequality Rules:

  • $|x| < a ⇔ -a < x < a$
  • $|x| > a ⇔ x < -a$ or $x > a$
  • $|x ± y| ≤ |x| + |y|$ (Triangle Inequality)
  • $|x ± y| ≥ ||x| - |y||$

Ready to Master All 6 Modulus Patterns?

Get complete access to all patterns with step-by-step video solutions and JEE-level practice problems

More Calculus Topics