Back to Calculus Topics
JEE Advanced Focus Reading Time: 15 min 6 Complex Problems

Domain & Range in Logarithmic Inequalities: A Common JEE Pitfall

Master complex inequalities like $\log_x(2x-1) > 0$ where the base itself is variable. Step-by-step case analysis approach.

92%
Students Struggle
4-8
Marks Involved
3
Critical Cases
100%
Systematic Solution

Why Variable Base Logarithms Are Tricky

When the base of a logarithm is variable, you need to consider multiple cases because the behavior changes dramatically based on whether the base is between 0 and 1 or greater than 1.

⚠️ The Critical Insight Most Students Miss

For $\log_a b > 0$, the inequality direction depends on the base $a$:

  • If $a > 1$: $\log_a b > 0 \Rightarrow b > 1$
  • If $0 < a < 1$: $\log_a b > 0 \Rightarrow 0 < b < 1$ (inequality reverses!)
JEE Main 2023 High Impact

Problem 1: Basic Case Analysis

Solve for $x$: $\log_x(2x-1) > 0$

✅ Systematic Solution

📌 Step 1: Fundamental Conditions

1 Base condition: $x > 0$ and $x \neq 1$

2 Argument condition: $2x - 1 > 0 \Rightarrow x > \frac{1}{2}$

Initial domain: $x > \frac{1}{2}$ and $x \neq 1$

📌 Step 2: Case Analysis Based on Base

Case 1: $x > 1$

For $x > 1$, $\log_x(2x-1) > 0 \Rightarrow 2x - 1 > 1$

$2x > 2 \Rightarrow x > 1$

Solution for Case 1: $x > 1$

Case 2: $0 < x < 1$

For $0 < x < 1$, $\log_x(2x-1) > 0 \Rightarrow 0 < 2x - 1 < 1$

$1 < 2x < 2 \Rightarrow \frac{1}{2} < x < 1$

Solution for Case 2: $\frac{1}{2} < x < 1$

📌 Step 3: Combine Solutions

From Case 1: $x > 1$

From Case 2: $\frac{1}{2} < x < 1$

Final Solution: $\left(\frac{1}{2}, 1\right) \cup (1, \infty)$

💡 Key Learning

  • Always split into two cases: base > 1 and 0 < base < 1
  • Remember: Inequality reverses when base is between 0 and 1
  • Don't forget the fundamental conditions: base > 0, base ≠ 1, argument > 0
JEE Advanced 2022 High Impact

Problem 2: Complex Argument

Solve for $x$: $\log_x(x^2 + x - 6) < 2$

✅ Systematic Solution

📌 Step 1: Fundamental Conditions

1 Base: $x > 0$, $x \neq 1$

2 Argument: $x^2 + x - 6 > 0$

Factor: $(x+3)(x-2) > 0 \Rightarrow x < -3$ or $x > 2$

Initial domain: $x > 2$ (combining with $x > 0$)

📌 Step 2: Rewrite Inequality

$\log_x(x^2 + x - 6) < 2$

Using logarithm property: $\log_x(x^2 + x - 6) < \log_x(x^2)$

Note: We use $x^2$ because $\log_x(x^2) = 2$

📌 Step 3: Case Analysis

Case 1: $x > 1$

Inequality direction preserved: $x^2 + x - 6 < x^2$

$x - 6 < 0 \Rightarrow x < 6$

Combine with $x > 2$ and $x > 1$: $2 < x < 6$

Case 2: $0 < x < 1$

Inequality reverses: $x^2 + x - 6 > x^2$

$x - 6 > 0 \Rightarrow x > 6$

But $x > 6$ contradicts $0 < x < 1$

No solution in this case

📌 Step 4: Final Solution

From Case 1: $2 < x < 6$

From Case 2: No solution

Final Solution: $(2, 6)$

📋 Quick Reference: Inequality Behavior

When Base $a > 1$:

  • $\log_a f(x) > \log_a g(x) \Rightarrow f(x) > g(x)$
  • $\log_a f(x) < \log_a g(x) \Rightarrow f(x) < g(x)$
  • Function is increasing
  • Inequality direction preserved

When $0 < a < 1$:

  • $\log_a f(x) > \log_a g(x) \Rightarrow f(x) < g(x)$
  • $\log_a f(x) < \log_a g(x) \Rightarrow f(x) > g(x)$
  • Function is decreasing
  • Inequality direction reversed

🎯 Memory Aid: "Small base (0

JEE Main 2021 High Impact

Problem 3: Multiple Logarithmic Conditions

Find domain of $f(x) = \sqrt{\log_x(x^2 - 3x + 2)}$

✅ Systematic Solution

📌 Step 1: Square Root Condition

For $\sqrt{\log_x(x^2 - 3x + 2)}$ to be defined:

$\log_x(x^2 - 3x + 2) \geq 0$

📌 Step 2: Fundamental Conditions

1 Base: $x > 0$, $x \neq 1$

2 Argument: $x^2 - 3x + 2 > 0$

Factor: $(x-1)(x-2) > 0 \Rightarrow x < 1$ or $x > 2$

📌 Step 3: Solve $\log_x(x^2 - 3x + 2) \geq 0$

Case 1: $x > 1$

$\log_x(x^2 - 3x + 2) \geq 0 \Rightarrow x^2 - 3x + 2 \geq 1$

$x^2 - 3x + 1 \geq 0$

Roots: $x = \frac{3 \pm \sqrt{5}}{2} \approx 0.38, 2.62$

Solution: $x \leq \frac{3 - \sqrt{5}}{2}$ or $x \geq \frac{3 + \sqrt{5}}{2}$

Combine with $x > 1$: $x \geq \frac{3 + \sqrt{5}}{2}$

Case 2: $0 < x < 1$

$\log_x(x^2 - 3x + 2) \geq 0 \Rightarrow 0 < x^2 - 3x + 2 \leq 1$

From argument condition: $x^2 - 3x + 2 > 0$ already gives $x < 1$

And $x^2 - 3x + 2 \leq 1 \Rightarrow x^2 - 3x + 1 \leq 0$

Solution: $\frac{3 - \sqrt{5}}{2} \leq x \leq \frac{3 + \sqrt{5}}{2}$

Combine with $0 < x < 1$: $\frac{3 - \sqrt{5}}{2} \leq x < 1$

📌 Step 4: Final Domain

From Case 1: $x \geq \frac{3 + \sqrt{5}}{2}$

From Case 2: $\frac{3 - \sqrt{5}}{2} \leq x < 1$

Final Domain: $\left[\frac{3 - \sqrt{5}}{2}, 1\right) \cup \left[\frac{3 + \sqrt{5}}{2}, \infty\right)$

🔄 Systematic Approach for Variable Base Logarithms

1

Identify Fundamental Conditions

Base > 0, Base ≠ 1, Argument > 0

2

Split into Two Cases

Case 1: Base > 1, Case 2: 0 < Base < 1

3

Apply Correct Inequality Rules

Preserve direction for base > 1, reverse for 0 < base < 1

4

Solve Each Case Separately

Combine with fundamental conditions

5

Take Union of Valid Solutions

Combine solutions from both cases

Problems 4-6 Available in Full Version

Includes quadratic bases, nested logarithms, and advanced composite functions

🎯 Test Your Understanding

Try these problems using the systematic approach:

1. Solve: $\log_x(3x-2) \leq 1$

Hint: Remember to consider both cases for the base

2. Find domain: $f(x) = \sqrt{\log_x(4-x)}$

Hint: Square root requires non-negative argument

3. Solve: $\log_{x^2}(x+1) > \frac{1}{2}$

Hint: Quadratic base needs additional analysis

🚫 Common Pitfalls to Avoid

Forgetting Case Analysis

Solving only for base > 1 and missing the 0 < base < 1 case

Ignoring Fundamental Conditions

Not checking base > 0, base ≠ 1, argument > 0

Wrong Inequality Direction

Not reversing inequality when base is between 0 and 1

Incorrect Domain Combination

Taking intersection instead of union of cases

Master Variable Base Logarithms!

These problems seem tricky but become routine with the systematic case analysis approach

Practice More Problems