Back to Calculus Topics
Advanced Level Reading Time: 15 min

JEE Advanced: The Toughest Domain & Range Problems Solved

Master complex multi-concept problems that combine domain/range with trigonometry, functions, and inequalities.

Why Advanced Domain & Range Problems Are Challenging

JEE Advanced domain and range problems require more than just basic understanding. They test your ability to:

  • Combine multiple mathematical concepts
  • Handle nested and composite functions
  • Apply trigonometric identities and inequalities
  • Work with inverse trigonometric functions
  • Solve complex inequalities systematically

🎯 JEE Advanced Strategy

These problems often appear in JEE Advanced because they test conceptual depth and problem-solving versatility. Mastery requires:

  • Systematic approach to complex constraints
  • Understanding function composition deeply
  • Recognizing patterns in trigonometric expressions
  • Applying inequality properties correctly

1. Complex Nested Functions

Problem 1: Nested Square Roots

Find the domain of $f(x) = \sqrt{\frac{1 - \sqrt{1 - x^2}}{2}}$

Step 1: Innermost constraint

For $\sqrt{1 - x^2}$ to be defined:

$1 - x^2 \geq 0 \Rightarrow x^2 \leq 1 \Rightarrow -1 \leq x \leq 1$

Step 2: Outer square root constraint

For the main square root to be defined:

$\frac{1 - \sqrt{1 - x^2}}{2} \geq 0$

Multiply both sides by 2 (positive):

$1 - \sqrt{1 - x^2} \geq 0 \Rightarrow \sqrt{1 - x^2} \leq 1$

Step 3: Analyze the inequality

Since $\sqrt{1 - x^2}$ is always non-negative and for $x \in [-1, 1]$, we have $0 \leq \sqrt{1 - x^2} \leq 1$.

The inequality $\sqrt{1 - x^2} \leq 1$ is always true for $x \in [-1, 1]$.

Step 4: Check for equality edge case

When $\sqrt{1 - x^2} = 1$, we get $x = 0$, and the function becomes:

$f(0) = \sqrt{\frac{1 - 1}{2}} = \sqrt{0} = 0$ ✓

So $x = 0$ is included in the domain.

Final Answer

Domain = $[-1, 1]$

Problem 2: Composite Logarithmic Function

Find the domain of $f(x) = \log_2(\log_3(\log_{1/2}(x^2 - 5x + 6)))$

Step 1: Innermost log constraint

For $\log_{1/2}(x^2 - 5x + 6)$ to be defined:

$x^2 - 5x + 6 > 0$

Factor: $(x - 2)(x - 3) > 0$

Solution: $x < 2$ or $x > 3$

Step 2: Middle log constraint

For $\log_3(\log_{1/2}(x^2 - 5x + 6))$ to be defined:

$\log_{1/2}(x^2 - 5x + 6) > 0$

Since base $1/2 < 1$, the inequality reverses:

$x^2 - 5x + 6 < (1/2)^0 = 1$

So: $x^2 - 5x + 6 < 1 \Rightarrow x^2 - 5x + 5 < 0$

Step 3: Solve quadratic inequality

Roots of $x^2 - 5x + 5 = 0$:

$x = \frac{5 \pm \sqrt{25 - 20}}{2} = \frac{5 \pm \sqrt{5}}{2}$

So $x^2 - 5x + 5 < 0$ when:

$\frac{5 - \sqrt{5}}{2} < x < \frac{5 + \sqrt{5}}{2}$

Step 4: Combine all constraints

We need:

  1. $x < 2$ or $x > 3$ (from Step 1)
  2. $\frac{5 - \sqrt{5}}{2} < x < \frac{5 + \sqrt{5}}{2}$ (from Step 3)

Numerically: $\frac{5 - \sqrt{5}}{2} \approx 1.38$, $\frac{5 + \sqrt{5}}{2} \approx 3.62$

Intersection: $(1.38, 2) \cup (3, 3.62)$

Final Answer

Domain = $\left(\frac{5 - \sqrt{5}}{2}, 2\right) \cup \left(3, \frac{5 + \sqrt{5}}{2}\right)$

2. Trigonometric Functions with Domain Constraints

Problem 3: Trigonometric Square Root

Find the domain of $f(x) = \sqrt{\sin x - \cos x} + \sqrt{\frac{1}{\tan x} - 1}$

Step 1: First square root constraint

For $\sqrt{\sin x - \cos x}$ to be defined:

$\sin x - \cos x \geq 0$

Divide by $\sqrt{2}$:

$\frac{1}{\sqrt{2}}\sin x - \frac{1}{\sqrt{2}}\cos x \geq 0$

This is: $\sin\left(x - \frac{\pi}{4}\right) \geq 0$

Solution: $2n\pi \leq x - \frac{\pi}{4} \leq (2n+1)\pi$

So: $2n\pi + \frac{\pi}{4} \leq x \leq (2n+1)\pi + \frac{\pi}{4}$

Step 2: Second square root constraint

For $\sqrt{\frac{1}{\tan x} - 1}$ to be defined:

$\frac{1}{\tan x} - 1 \geq 0$ and $\tan x \neq 0$

Simplify: $\frac{1 - \tan x}{\tan x} \geq 0$

This is a rational inequality. Critical points: $\tan x = 0$ and $\tan x = 1$

Step 3: Solve the rational inequality

Sign chart for $\frac{1 - \tan x}{\tan x}$:

  • When $0 < \tan x < 1$: numerator positive, denominator positive → positive
  • When $\tan x > 1$: numerator negative, denominator positive → negative
  • When $\tan x < 0$: numerator positive, denominator negative → negative

So $\frac{1 - \tan x}{\tan x} \geq 0$ when $0 < \tan x \leq 1$

Step 4: Combine both constraints

We need both:

  1. $2n\pi + \frac{\pi}{4} \leq x \leq (2n+1)\pi + \frac{\pi}{4}$
  2. $0 < \tan x \leq 1$

The intersection occurs in intervals where both conditions are satisfied simultaneously.

Final domain: $x \in \left[2n\pi + \frac{\pi}{4}, 2n\pi + \frac{\pi}{2}\right) \cup \left(2n\pi + \frac{\pi}{2}, 2n\pi + \frac{5\pi}{4}\right]$

Final Answer

Domain = $\bigcup_{n \in \mathbb{Z}} \left(\left[2n\pi + \frac{\pi}{4}, 2n\pi + \frac{\pi}{2}\right) \cup \left(2n\pi + \frac{\pi}{2}, 2n\pi + \frac{5\pi}{4}\right]\right)$

3. Inverse Trigonometric Functions

Problem 4: Composite Inverse Trig Function

Find the domain of $f(x) = \sin^{-1}\left(\frac{1 + x^2}{2x}\right)$

Step 1: Domain of inverse sine

For $\sin^{-1}(y)$ to be defined, we need $-1 \leq y \leq 1$

So: $-1 \leq \frac{1 + x^2}{2x} \leq 1$

Step 2: Solve the inequality

We need to solve two inequalities:

  1. $\frac{1 + x^2}{2x} \geq -1$
  2. $\frac{1 + x^2}{2x} \leq 1$

Step 3: First inequality

$\frac{1 + x^2}{2x} \geq -1$

Multiply by $2x$ (but sign matters):

  • If $x > 0$: $1 + x^2 \geq -2x \Rightarrow x^2 + 2x + 1 \geq 0 \Rightarrow (x+1)^2 \geq 0$ (always true)
  • If $x < 0$: $1 + x^2 \leq -2x \Rightarrow x^2 + 2x + 1 \leq 0 \Rightarrow (x+1)^2 \leq 0 \Rightarrow x = -1$

So from first inequality: $x > 0$ or $x = -1$

Step 4: Second inequality

$\frac{1 + x^2}{2x} \leq 1$

Multiply by $2x$ (sign matters):

  • If $x > 0$: $1 + x^2 \leq 2x \Rightarrow x^2 - 2x + 1 \leq 0 \Rightarrow (x-1)^2 \leq 0 \Rightarrow x = 1$
  • If $x < 0$: $1 + x^2 \geq 2x \Rightarrow x^2 - 2x + 1 \geq 0 \Rightarrow (x-1)^2 \geq 0$ (always true)

So from second inequality: $x = 1$ or $x < 0$

Step 5: Combine results

From Step 3: $x > 0$ or $x = -1$

From Step 4: $x = 1$ or $x < 0$

Intersection: $x = 1$ or $x = -1$

Final Answer

Domain = $\{-1, 1\}$

4. Modulus & Piecewise Functions

Problem 5: Modulus in Denominator

Find the domain of $f(x) = \frac{1}{\sqrt{|x| - x}}$

Step 1: Square root constraint

For $\sqrt{|x| - x}$ to be defined:

$|x| - x \geq 0$

Step 2: Denominator constraint

Since it's in denominator:

$\sqrt{|x| - x} \neq 0 \Rightarrow |x| - x \neq 0$

Step 3: Analyze by cases

Case 1: $x \geq 0$

Then $|x| = x$, so $|x| - x = 0$

But this violates denominator constraint. So no $x \geq 0$.

Case 2: $x < 0$

Then $|x| = -x$, so $|x| - x = -x - x = -2x$

Since $x < 0$, $-2x > 0$, so $\sqrt{|x| - x}$ is defined and non-zero.

Final Answer

Domain = $(-\infty, 0)$

5. Multi-Concept Challenge Problems

Problem 6: The Ultimate Challenge

Find the domain and range of $f(x) = \log_2\left(\sin^{-1}\left(\frac{x^2 - 1}{x^2 + 1}\right)\right)$

Step 1: Innermost function constraint

For $\sin^{-1}\left(\frac{x^2 - 1}{x^2 + 1}\right)$ to be defined:

$-1 \leq \frac{x^2 - 1}{x^2 + 1} \leq 1$

Since denominator $x^2 + 1 > 0$ for all $x$, we can analyze directly.

Step 2: Analyze the bounds

Note that $\frac{x^2 - 1}{x^2 + 1} = 1 - \frac{2}{x^2 + 1}$

Since $x^2 + 1 \geq 1$, we have $\frac{2}{x^2 + 1} \leq 2$

So: $1 - \frac{2}{x^2 + 1} \geq 1 - 2 = -1$

Also: $1 - \frac{2}{x^2 + 1} \leq 1 - 0 = 1$

So automatically: $-1 \leq \frac{x^2 - 1}{x^2 + 1} \leq 1$ for all real $x$.

Step 3: Logarithm constraint

For $\log_2\left(\sin^{-1}\left(\frac{x^2 - 1}{x^2 + 1}\right)\right)$ to be defined:

$\sin^{-1}\left(\frac{x^2 - 1}{x^2 + 1}\right) > 0$

Since $\sin^{-1}(y) > 0$ when $y > 0$:

$\frac{x^2 - 1}{x^2 + 1} > 0$

Step 4: Solve the inequality

$\frac{x^2 - 1}{x^2 + 1} > 0$

Since denominator $x^2 + 1 > 0$ always, this simplifies to:

$x^2 - 1 > 0 \Rightarrow x^2 > 1 \Rightarrow x < -1$ or $x > 1$

Step 5: Find the range

Let $y = \frac{x^2 - 1}{x^2 + 1}$

When $x \to \pm\infty$, $y \to 1^-$

When $x \to 1^+$ or $x \to -1^-$, $y \to 0^+$

So $y \in (0, 1)$ for $x \in (-\infty, -1) \cup (1, \infty)$

Then $\sin^{-1}(y) \in (0, \frac{\pi}{2})$

Finally, $\log_2(\sin^{-1}(y)) \in (-\infty, \log_2(\frac{\pi}{2}))$

Final Answer

Domain = $(-\infty, -1) \cup (1, \infty)$

Range = $\left(-\infty, \log_2\left(\frac{\pi}{2}\right)\right)$

Advanced Problem Solving Strategies

🔍 Systematic Approach

  • Start from the innermost function and work outward
  • Handle each constraint separately before combining
  • Pay attention to inequality directions when multiplying/dividing
  • Check edge cases where denominators are zero

🎯 Common Pitfalls to Avoid

  • Forgetting to reverse inequality signs when multiplying by negative numbers
  • Missing edge cases in trigonometric functions
  • Not considering all branches in inverse trigonometric functions
  • Overlooking denominator constraints in rational functions

📝 JEE Advanced Exam Tips

  • These problems often appear as single correct or multiple correct choice questions
  • Time management is crucial - if stuck, move on and return later
  • Practice recognizing patterns to solve faster
  • Always verify your answer by testing boundary values

Try These Advanced Problems

Challenge Yourself

Problem A:

Find domain of $f(x) = \sqrt{\frac{\sin^{-1}(2x)}{\cos^{-1}(2x)}}$

Problem B:

Find domain and range of $f(x) = \log_{\frac{1}{2}}\left(\log_2\left(\frac{x^2 + 4x + 3}{x - 1}\right)\right)$

Problem C:

Find domain of $f(x) = \sqrt{\sin(\log_2 x)} + \sqrt{16 - x^2}$

Hint: These require combining multiple concepts we've covered. Work systematically!

Ready for Even More Advanced Concepts?

Master domain and range in functions of multiple variables and learn advanced graphing techniques!

Master Multi-Variable Functions →