JEE Advanced: The Toughest Domain & Range Problems Solved
Master complex multi-concept problems that combine domain/range with trigonometry, functions, and inequalities.
Why Advanced Domain & Range Problems Are Challenging
JEE Advanced domain and range problems require more than just basic understanding. They test your ability to:
- Combine multiple mathematical concepts
- Handle nested and composite functions
- Apply trigonometric identities and inequalities
- Work with inverse trigonometric functions
- Solve complex inequalities systematically
🎯 JEE Advanced Strategy
These problems often appear in JEE Advanced because they test conceptual depth and problem-solving versatility. Mastery requires:
- Systematic approach to complex constraints
- Understanding function composition deeply
- Recognizing patterns in trigonometric expressions
- Applying inequality properties correctly
1. Complex Nested Functions
Problem 1: Nested Square Roots
Find the domain of $f(x) = \sqrt{\frac{1 - \sqrt{1 - x^2}}{2}}$
Step 1: Innermost constraint
For $\sqrt{1 - x^2}$ to be defined:
Step 2: Outer square root constraint
For the main square root to be defined:
Multiply both sides by 2 (positive):
Step 3: Analyze the inequality
Since $\sqrt{1 - x^2}$ is always non-negative and for $x \in [-1, 1]$, we have $0 \leq \sqrt{1 - x^2} \leq 1$.
The inequality $\sqrt{1 - x^2} \leq 1$ is always true for $x \in [-1, 1]$.
Step 4: Check for equality edge case
When $\sqrt{1 - x^2} = 1$, we get $x = 0$, and the function becomes:
So $x = 0$ is included in the domain.
Final Answer
Domain = $[-1, 1]$
Problem 2: Composite Logarithmic Function
Find the domain of $f(x) = \log_2(\log_3(\log_{1/2}(x^2 - 5x + 6)))$
Step 1: Innermost log constraint
For $\log_{1/2}(x^2 - 5x + 6)$ to be defined:
Factor: $(x - 2)(x - 3) > 0$
Solution: $x < 2$ or $x > 3$
Step 2: Middle log constraint
For $\log_3(\log_{1/2}(x^2 - 5x + 6))$ to be defined:
Since base $1/2 < 1$, the inequality reverses:
So: $x^2 - 5x + 6 < 1 \Rightarrow x^2 - 5x + 5 < 0$
Step 3: Solve quadratic inequality
Roots of $x^2 - 5x + 5 = 0$:
So $x^2 - 5x + 5 < 0$ when:
Step 4: Combine all constraints
We need:
- $x < 2$ or $x > 3$ (from Step 1)
- $\frac{5 - \sqrt{5}}{2} < x < \frac{5 + \sqrt{5}}{2}$ (from Step 3)
Numerically: $\frac{5 - \sqrt{5}}{2} \approx 1.38$, $\frac{5 + \sqrt{5}}{2} \approx 3.62$
Intersection: $(1.38, 2) \cup (3, 3.62)$
Final Answer
Domain = $\left(\frac{5 - \sqrt{5}}{2}, 2\right) \cup \left(3, \frac{5 + \sqrt{5}}{2}\right)$
2. Trigonometric Functions with Domain Constraints
Problem 3: Trigonometric Square Root
Find the domain of $f(x) = \sqrt{\sin x - \cos x} + \sqrt{\frac{1}{\tan x} - 1}$
Step 1: First square root constraint
For $\sqrt{\sin x - \cos x}$ to be defined:
Divide by $\sqrt{2}$:
This is: $\sin\left(x - \frac{\pi}{4}\right) \geq 0$
Solution: $2n\pi \leq x - \frac{\pi}{4} \leq (2n+1)\pi$
So: $2n\pi + \frac{\pi}{4} \leq x \leq (2n+1)\pi + \frac{\pi}{4}$
Step 2: Second square root constraint
For $\sqrt{\frac{1}{\tan x} - 1}$ to be defined:
Simplify: $\frac{1 - \tan x}{\tan x} \geq 0$
This is a rational inequality. Critical points: $\tan x = 0$ and $\tan x = 1$
Step 3: Solve the rational inequality
Sign chart for $\frac{1 - \tan x}{\tan x}$:
- When $0 < \tan x < 1$: numerator positive, denominator positive → positive
- When $\tan x > 1$: numerator negative, denominator positive → negative
- When $\tan x < 0$: numerator positive, denominator negative → negative
So $\frac{1 - \tan x}{\tan x} \geq 0$ when $0 < \tan x \leq 1$
Step 4: Combine both constraints
We need both:
- $2n\pi + \frac{\pi}{4} \leq x \leq (2n+1)\pi + \frac{\pi}{4}$
- $0 < \tan x \leq 1$
The intersection occurs in intervals where both conditions are satisfied simultaneously.
Final domain: $x \in \left[2n\pi + \frac{\pi}{4}, 2n\pi + \frac{\pi}{2}\right) \cup \left(2n\pi + \frac{\pi}{2}, 2n\pi + \frac{5\pi}{4}\right]$
Final Answer
Domain = $\bigcup_{n \in \mathbb{Z}} \left(\left[2n\pi + \frac{\pi}{4}, 2n\pi + \frac{\pi}{2}\right) \cup \left(2n\pi + \frac{\pi}{2}, 2n\pi + \frac{5\pi}{4}\right]\right)$
3. Inverse Trigonometric Functions
Problem 4: Composite Inverse Trig Function
Find the domain of $f(x) = \sin^{-1}\left(\frac{1 + x^2}{2x}\right)$
Step 1: Domain of inverse sine
For $\sin^{-1}(y)$ to be defined, we need $-1 \leq y \leq 1$
So: $-1 \leq \frac{1 + x^2}{2x} \leq 1$
Step 2: Solve the inequality
We need to solve two inequalities:
- $\frac{1 + x^2}{2x} \geq -1$
- $\frac{1 + x^2}{2x} \leq 1$
Step 3: First inequality
$\frac{1 + x^2}{2x} \geq -1$
Multiply by $2x$ (but sign matters):
- If $x > 0$: $1 + x^2 \geq -2x \Rightarrow x^2 + 2x + 1 \geq 0 \Rightarrow (x+1)^2 \geq 0$ (always true)
- If $x < 0$: $1 + x^2 \leq -2x \Rightarrow x^2 + 2x + 1 \leq 0 \Rightarrow (x+1)^2 \leq 0 \Rightarrow x = -1$
So from first inequality: $x > 0$ or $x = -1$
Step 4: Second inequality
$\frac{1 + x^2}{2x} \leq 1$
Multiply by $2x$ (sign matters):
- If $x > 0$: $1 + x^2 \leq 2x \Rightarrow x^2 - 2x + 1 \leq 0 \Rightarrow (x-1)^2 \leq 0 \Rightarrow x = 1$
- If $x < 0$: $1 + x^2 \geq 2x \Rightarrow x^2 - 2x + 1 \geq 0 \Rightarrow (x-1)^2 \geq 0$ (always true)
So from second inequality: $x = 1$ or $x < 0$
Step 5: Combine results
From Step 3: $x > 0$ or $x = -1$
From Step 4: $x = 1$ or $x < 0$
Intersection: $x = 1$ or $x = -1$
Final Answer
Domain = $\{-1, 1\}$
4. Modulus & Piecewise Functions
Problem 5: Modulus in Denominator
Find the domain of $f(x) = \frac{1}{\sqrt{|x| - x}}$
Step 1: Square root constraint
For $\sqrt{|x| - x}$ to be defined:
Step 2: Denominator constraint
Since it's in denominator:
Step 3: Analyze by cases
Case 1: $x \geq 0$
Then $|x| = x$, so $|x| - x = 0$
But this violates denominator constraint. So no $x \geq 0$.
Case 2: $x < 0$
Then $|x| = -x$, so $|x| - x = -x - x = -2x$
Since $x < 0$, $-2x > 0$, so $\sqrt{|x| - x}$ is defined and non-zero.
Final Answer
Domain = $(-\infty, 0)$
5. Multi-Concept Challenge Problems
Problem 6: The Ultimate Challenge
Find the domain and range of $f(x) = \log_2\left(\sin^{-1}\left(\frac{x^2 - 1}{x^2 + 1}\right)\right)$
Step 1: Innermost function constraint
For $\sin^{-1}\left(\frac{x^2 - 1}{x^2 + 1}\right)$ to be defined:
Since denominator $x^2 + 1 > 0$ for all $x$, we can analyze directly.
Step 2: Analyze the bounds
Note that $\frac{x^2 - 1}{x^2 + 1} = 1 - \frac{2}{x^2 + 1}$
Since $x^2 + 1 \geq 1$, we have $\frac{2}{x^2 + 1} \leq 2$
So: $1 - \frac{2}{x^2 + 1} \geq 1 - 2 = -1$
Also: $1 - \frac{2}{x^2 + 1} \leq 1 - 0 = 1$
So automatically: $-1 \leq \frac{x^2 - 1}{x^2 + 1} \leq 1$ for all real $x$.
Step 3: Logarithm constraint
For $\log_2\left(\sin^{-1}\left(\frac{x^2 - 1}{x^2 + 1}\right)\right)$ to be defined:
Since $\sin^{-1}(y) > 0$ when $y > 0$:
Step 4: Solve the inequality
$\frac{x^2 - 1}{x^2 + 1} > 0$
Since denominator $x^2 + 1 > 0$ always, this simplifies to:
Step 5: Find the range
Let $y = \frac{x^2 - 1}{x^2 + 1}$
When $x \to \pm\infty$, $y \to 1^-$
When $x \to 1^+$ or $x \to -1^-$, $y \to 0^+$
So $y \in (0, 1)$ for $x \in (-\infty, -1) \cup (1, \infty)$
Then $\sin^{-1}(y) \in (0, \frac{\pi}{2})$
Finally, $\log_2(\sin^{-1}(y)) \in (-\infty, \log_2(\frac{\pi}{2}))$
Final Answer
Domain = $(-\infty, -1) \cup (1, \infty)$
Range = $\left(-\infty, \log_2\left(\frac{\pi}{2}\right)\right)$
Advanced Problem Solving Strategies
🔍 Systematic Approach
- Start from the innermost function and work outward
- Handle each constraint separately before combining
- Pay attention to inequality directions when multiplying/dividing
- Check edge cases where denominators are zero
🎯 Common Pitfalls to Avoid
- Forgetting to reverse inequality signs when multiplying by negative numbers
- Missing edge cases in trigonometric functions
- Not considering all branches in inverse trigonometric functions
- Overlooking denominator constraints in rational functions
📝 JEE Advanced Exam Tips
- These problems often appear as single correct or multiple correct choice questions
- Time management is crucial - if stuck, move on and return later
- Practice recognizing patterns to solve faster
- Always verify your answer by testing boundary values
Try These Advanced Problems
Challenge Yourself
Problem A:
Find domain of $f(x) = \sqrt{\frac{\sin^{-1}(2x)}{\cos^{-1}(2x)}}$
Problem B:
Find domain and range of $f(x) = \log_{\frac{1}{2}}\left(\log_2\left(\frac{x^2 + 4x + 3}{x - 1}\right)\right)$
Problem C:
Find domain of $f(x) = \sqrt{\sin(\log_2 x)} + \sqrt{16 - x^2}$
Hint: These require combining multiple concepts we've covered. Work systematically!
Ready for Even More Advanced Concepts?
Master domain and range in functions of multiple variables and learn advanced graphing techniques!
Master Multi-Variable Functions →