Back to Calculus Topics
JEE Main & Advanced Reading Time: 12 min 6 Methods

Differentiation in Determinants: How to Differentiate a Determinant

Master the essential techniques for differentiating determinants with step-by-step methods and JEE-level practice problems.

6
Methods
100%
JEE Relevance
12+
Examples
20min
Avg. Practice Time

Why Differentiation of Determinants is Important for JEE

Differentiation of determinants is a crucial topic that appears frequently in JEE Main and Advanced. Based on analysis of previous years' papers, this concept appears in 1-2 questions every year. Mastering these techniques will help you:

  • Solve complex differentiation problems efficiently
  • Handle parametric determinants with confidence
  • Apply multiple differentiation methods strategically
  • Save crucial time during the examination

Key Formula: Differentiation of Determinants

For a 2×2 determinant:

$\frac{d}{dx} \begin{vmatrix} f_1(x) & f_2(x) \\ g_1(x) & g_2(x) \end{vmatrix} = \begin{vmatrix} f_1'(x) & f_2'(x) \\ g_1(x) & g_2(x) \end{vmatrix} + \begin{vmatrix} f_1(x) & f_2(x) \\ g_1'(x) & g_2'(x) \end{vmatrix}$

For a 3×3 determinant:

$\frac{d}{dx} \begin{vmatrix} f_1 & f_2 & f_3 \\ g_1 & g_2 & g_3 \\ h_1 & h_2 & h_3 \end{vmatrix} = \begin{vmatrix} f_1' & f_2' & f_3' \\ g_1 & g_2 & g_3 \\ h_1 & h_2 & h_3 \end{vmatrix} + \begin{vmatrix} f_1 & f_2 & f_3 \\ g_1' & g_2' & g_3' \\ h_1 & h_2 & h_3 \end{vmatrix} + \begin{vmatrix} f_1 & f_2 & f_3 \\ g_1 & g_2 & g_3 \\ h_1' & h_2' & h_3' \end{vmatrix}$

Method 1 Easy

Direct Differentiation Method

Differentiate each element systematically using the standard formula.

Example: Differentiate $D(x) = \begin{vmatrix} x & x^2 \\ x^3 & x^4 \end{vmatrix}$

Step 1: Apply the differentiation formula:

$\frac{dD}{dx} = \begin{vmatrix} 1 & 2x \\ x^3 & x^4 \end{vmatrix} + \begin{vmatrix} x & x^2 \\ 3x^2 & 4x^3 \end{vmatrix}$

Step 2: Calculate each determinant:

First determinant: $(1)(x^4) - (2x)(x^3) = x^4 - 2x^4 = -x^4$

Second determinant: $(x)(4x^3) - (x^2)(3x^2) = 4x^4 - 3x^4 = x^4$

Step 3: Add results: $\frac{dD}{dx} = -x^4 + x^4 = 0$

Final Answer: $\frac{dD}{dx} = 0$

Method 2 Medium

Expansion Then Differentiation

First expand the determinant, then differentiate the resulting expression.

Example: Differentiate $D(x) = \begin{vmatrix} \sin x & \cos x \\ -\cos x & \sin x \end{vmatrix}$

Step 1: Expand the determinant:

$D(x) = (\sin x)(\sin x) - (\cos x)(-\cos x) = \sin^2 x + \cos^2 x = 1$

Step 2: Differentiate the result:

$\frac{dD}{dx} = \frac{d}{dx}(1) = 0$

Final Answer: $\frac{dD}{dx} = 0$

Method 3 Hard

Parametric Determinants

Differentiate determinants where elements are functions of a parameter.

Example: If $D(t) = \begin{vmatrix} t & t^2 & t^3 \\ 1 & 2t & 3t^2 \\ 0 & 2 & 6t \end{vmatrix}$, find $\frac{dD}{dt}$

Step 1: Apply the 3×3 differentiation formula:

$\frac{dD}{dt} = \begin{vmatrix} 1 & 2t & 3t^2 \\ 1 & 2t & 3t^2 \\ 0 & 2 & 6t \end{vmatrix} + \begin{vmatrix} t & t^2 & t^3 \\ 0 & 2 & 6t \\ 0 & 2 & 6t \end{vmatrix} + \begin{vmatrix} t & t^2 & t^3 \\ 1 & 2t & 3t^2 \\ 0 & 0 & 6 \end{vmatrix}$

Step 2: Notice first two determinants have identical rows/columns:

First determinant = 0 (identical rows)

Second determinant = 0 (identical rows)

Step 3: Calculate third determinant:

$\begin{vmatrix} t & t^2 & t^3 \\ 1 & 2t & 3t^2 \\ 0 & 0 & 6 \end{vmatrix} = t \cdot \begin{vmatrix} 2t & 3t^2 \\ 0 & 6 \end{vmatrix} - t^2 \cdot \begin{vmatrix} 1 & 3t^2 \\ 0 & 6 \end{vmatrix} + t^3 \cdot \begin{vmatrix} 1 & 2t \\ 0 & 0 \end{vmatrix}$

$= t(12t) - t^2(6) + t^3(0) = 12t^2 - 6t^2 = 6t^2$

Final Answer: $\frac{dD}{dt} = 6t^2$

🚀 Quick Solving Strategies

When to Use Each Method:

  • Direct Method: For simple determinants with differentiable elements
  • Expansion Method: When expansion gives a simpler expression
  • Parametric Method: For determinants with parameter-dependent elements
  • Row/Column Operations: When determinants can be simplified first

Common Pitfalls to Avoid:

  • Forgetting to differentiate all rows/columns systematically
  • Missing the plus signs between derivative determinants
  • Not checking if expansion would be simpler first
  • Overlooking identical rows/columns that make determinants zero

Methods 4-6 Available in Full Version

Includes Higher Order Differentiation, Wronskian Determinants, and Applications in Differential Equations

JEE Advanced 2022 Hard

JEE Advanced Level Problem

If $D(x) = \begin{vmatrix} f(x) & g(x) & h(x) \\ xf'(x) & xg'(x) & xh'(x) \\ x^2f''(x) & x^2g''(x) & x^2h''(x) \end{vmatrix}$, prove that $D'(x) = \frac{3}{x}D(x)$

Solution Approach:

Step 1: Apply the differentiation formula to $D(x)$

Step 2: Differentiate each row systematically

Step 3: Use product rule for elements with $x$ factors

Step 4: Show the relationship $D'(x) = \frac{3}{x}D(x)$

Key Insight: This demonstrates how derivative determinants can reveal functional relationships

📝 Quick Self-Test

Try these JEE-level problems to test your understanding:

1. Differentiate $D(x) = \begin{vmatrix} x^2 & \ln x \\ e^x & \sin x \end{vmatrix}$

2. Find $\frac{d}{dx} \begin{vmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{vmatrix}$

3. If $D(x) = \begin{vmatrix} 1 & x & x^2 \\ x & x^2 & 1 \\ x^2 & 1 & x \end{vmatrix}$, find $D'(1)$

Ready to Master All 6 Methods?

Get complete access to all methods with step-by-step video solutions and JEE practice problems

More Calculus Topics