Back to Calculus Topics
Calculus Reading Time: 15 min Advanced Topic

Higher-Order Derivatives: Mastering the nth Derivative

From basic patterns to Leibniz rule - complete guide to finding nth derivatives for JEE success.

5+
Key Patterns
100%
JEE Relevance
3-6
Marks Guaranteed
25min
Mastery Time

Why Higher-Order Derivatives Matter in JEE

Higher-order derivatives appear in every JEE paper - from simple pattern recognition to complex Leibniz rule applications. Mastering this topic gives you:

  • Quick 2-3 marks in MCQs through pattern recognition
  • Foundation for Taylor/Maclaurin series and expansion problems
  • Edge in integer/numerical answer type questions
  • Better understanding of curve behavior and optimization

1. Fundamental Patterns & Formulas

Power Rule Essential

Polynomial Functions

General Formula:

If $f(x) = x^m$, then:

$$ f^{(n)}(x) = \begin{cases} m(m-1)\cdots(m-n+1)x^{m-n} & \text{if } n \leq m \\ 0 & \text{if } n > m \end{cases} $$

Using factorial notation:

$$ f^{(n)}(x) = \frac{m!}{(m-n)!}x^{m-n} \quad \text{for } n \leq m $$

Example 1:

Find the 4th derivative of $f(x) = x^5$

Solution: $f^{(4)}(x) = \frac{5!}{(5-4)!}x^{5-4} = \frac{120}{1}x^1 = 120x$

Example 2:

Find the 7th derivative of $f(x) = x^3$

Solution: Since $n = 7 > 3 = m$, $f^{(7)}(x) = 0$

Exponential Pattern Essential

Exponential Functions

Key Formulas:

• $f(x) = e^{ax} \Rightarrow f^{(n)}(x) = a^n e^{ax}$

• $f(x) = a^x \Rightarrow f^{(n)}(x) = a^x (\ln a)^n$

Example:

Find the nth derivative of $f(x) = e^{3x}$

Solution: $f^{(n)}(x) = 3^n e^{3x}$

2. Trigonometric Functions Patterns

Sine Pattern Must Know

Sine and Cosine Functions

General Formulas:

• $f(x) = \sin(ax + b) \Rightarrow f^{(n)}(x) = a^n \sin\left(ax + b + \frac{n\pi}{2}\right)$

• $f(x) = \cos(ax + b) \Rightarrow f^{(n)}(x) = a^n \cos\left(ax + b + \frac{n\pi}{2}\right)$

💡 Memory Aid

Every derivative of sin/cos adds $\frac{\pi}{2}$ to the angle. The pattern cycles every 4 derivatives:

$f(x)$

$\sin x$

$f'(x)$

$\cos x$

$f''(x)$

$-\sin x$

$f'''(x)$

$-\cos x$

Example:

Find the 5th derivative of $f(x) = \sin(2x)$

Solution: $f^{(5)}(x) = 2^5 \sin\left(2x + \frac{5\pi}{2}\right) = 32 \sin\left(2x + \frac{\pi}{2}\right) = 32 \cos(2x)$

Note: $\frac{5\pi}{2} = 2\pi + \frac{\pi}{2}$, and $\sin(\theta + 2\pi) = \sin\theta$

3. Exponential & Logarithmic Patterns

Logarithm Pattern Important

Logarithmic Functions

General Formula:

For $f(x) = \ln(ax + b)$:

$$ f^{(n)}(x) = \frac{(-1)^{n-1} a^n (n-1)!}{(ax + b)^n} $$

Example:

Find the 4th derivative of $f(x) = \ln(2x + 1)$

Solution: $f^{(4)}(x) = \frac{(-1)^{3} \cdot 2^4 \cdot 3!}{(2x + 1)^4} = \frac{-16 \cdot 6}{(2x + 1)^4} = \frac{-96}{(2x + 1)^4}$

4. Leibniz Rule for Product of Functions

Leibniz Rule Advanced

Product of Two Functions

Leibniz Theorem:

If $y = u(x)v(x)$, then:

$$ (uv)^{(n)} = \sum_{r=0}^{n} \binom{n}{r} u^{(r)} v^{(n-r)} $$

Where $\binom{n}{r} = \frac{n!}{r!(n-r)!}$ is the binomial coefficient.

💡 Application Strategy

  • Choose $u(x)$ as the function whose derivatives become simpler or zero
  • Choose $v(x)$ as the function whose derivatives follow a known pattern
  • Look for points where higher derivatives become zero to simplify calculations

Example 1:

Find the 3rd derivative of $f(x) = x^2 e^{3x}$

Solution: Let $u(x) = x^2$, $v(x) = e^{3x}$

Using Leibniz rule:

$(uv)^{(3)} = \binom{3}{0}u^{(0)}v^{(3)} + \binom{3}{1}u^{(1)}v^{(2)} + \binom{3}{2}u^{(2)}v^{(1)} + \binom{3}{3}u^{(3)}v^{(0)}$

Since $u^{(3)}(x) = 0$, we get:

$f^{(3)}(x) = 1 \cdot x^2 \cdot 27e^{3x} + 3 \cdot 2x \cdot 9e^{3x} + 3 \cdot 2 \cdot 3e^{3x}$

$= 27x^2 e^{3x} + 54x e^{3x} + 18 e^{3x}$

$= e^{3x}(27x^2 + 54x + 18)$

Example 2 (JEE Main):

If $y = x^3 \sin x$, find $y^{(4)}$

Solution: Let $u(x) = x^3$, $v(x) = \sin x$

Using Leibniz rule for n=4:

Since $u^{(4)}(x) = u^{(5)}(x) = \cdots = 0$, only first 4 terms matter:

$y^{(4)} = \binom{4}{0}u^{(0)}v^{(4)} + \binom{4}{1}u^{(1)}v^{(3)} + \binom{4}{2}u^{(2)}v^{(2)} + \binom{4}{3}u^{(3)}v^{(1)}$

$= 1 \cdot x^3 \cdot \sin(x + 2\pi) + 4 \cdot 3x^2 \cdot \sin(x + \frac{3\pi}{2}) + 6 \cdot 6x \cdot \sin(x + \pi) + 4 \cdot 6 \cdot \sin(x + \frac{\pi}{2})$

$= x^3 \sin x + 12x^2 (-\cos x) + 36x (-\sin x) + 24 \cos x$

$= x^3 \sin x - 12x^2 \cos x - 36x \sin x + 24 \cos x$

5. Special Patterns & Shortcuts

Reciprocal Functions Pattern

Key Formula:

For $f(x) = \frac{1}{ax + b}$:

$$ f^{(n)}(x) = \frac{(-1)^n a^n n!}{(ax + b)^{n+1}} $$

Example:

Find the 5th derivative of $f(x) = \frac{1}{2x - 1}$

Solution: $f^{(5)}(x) = \frac{(-1)^5 \cdot 2^5 \cdot 5!}{(2x - 1)^{6}} = \frac{-32 \cdot 120}{(2x - 1)^6} = \frac{-3840}{(2x - 1)^6}$

📚 Quick Reference Table

Function nth Derivative Formula Key Pattern
$x^m$ $\frac{m!}{(m-n)!}x^{m-n}$ Zero when $n > m$
$e^{ax}$ $a^n e^{ax}$ Exponential remains
$\sin(ax+b)$ $a^n \sin(ax+b+\frac{n\pi}{2})$ Phase shift by $\frac{\pi}{2}$
$\cos(ax+b)$ $a^n \cos(ax+b+\frac{n\pi}{2})$ Phase shift by $\frac{\pi}{2}$
$\ln(ax+b)$ $\frac{(-1)^{n-1}a^n(n-1)!}{(ax+b)^n}$ Alternating sign
$\frac{1}{ax+b}$ $\frac{(-1)^n a^n n!}{(ax+b)^{n+1}}$ Alternating sign

🎯 Practice Problems

Test your understanding with these JEE-level problems:

1. Find the 6th derivative of $f(x) = \sin(3x)$

Difficulty: Easy | Pattern: Trigonometric

2. Using Leibniz rule, find the 4th derivative of $f(x) = x^4 e^{2x}$

Difficulty: Medium | Concept: Leibniz Rule

3. If $y = x^2 \ln(1+x)$, find $y^{(3)}$ at $x=0$

Difficulty: Hard | Concept: Mixed Functions

💡 JEE Exam Tips

Time-Saving Strategies:

  • Memorize the basic patterns for quick recognition
  • For trigonometric functions, use the phase shift method
  • In Leibniz rule, identify when higher derivatives become zero
  • Practice mental calculation for small values of n

Common Pitfalls:

  • Forgetting the alternating sign in logarithmic derivatives
  • Mishandling factorial expressions in power functions
  • Confusing the phase shift in trigonometric derivatives
  • Missing the binomial coefficients in Leibniz rule

Ready to Master Higher-Order Derivatives?

Practice with 50+ solved examples and mock test questions

More Calculus Topics