Back to Calculus Topics
JEE Main & Advanced Reading Time: 25 min 8 Problems

When Differentiation Gets Tricky: Handling Piecewise & Greatest Integer Functions

Master the art of differentiating discontinuous functions with step-by-step approaches for JEE Main & Advanced.

85%
JEE Appearance Rate
3
Key Concepts
8
Solved Examples
12min
Avg. Solve Time

Why These Functions Are Challenging

Piecewise and greatest integer functions break the "smoothness" that standard differentiation rules assume. Based on JEE papers from 2015-2024, these functions appear in 3 out of every 4 calculus problems involving differentiation.

Key Challenge Points:

  • Continuity Check must precede differentiability
  • Left-hand & Right-hand derivatives must be equal
  • Greatest Integer Function [[x]] is discontinuous at integers
  • Piecewise junctions are critical points to examine
Core Concept 1 Essential

The Two-Step Approach: Continuity → Differentiability

Step 1: Check Continuity at Junction Points

For $f(x) = \begin{cases} f_1(x) & \text{if } x < a \\ f_2(x) & \text{if } x \geq a \end{cases}$

Check: $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = f(a)$

Step 2: Check Differentiability

If continuous, check: $\lim_{h \to 0^-} \frac{f(a+h)-f(a)}{h} = \lim_{h \to 0^+} \frac{f(a+h)-f(a)}{h}$

Example: Check differentiability at x=1 for:

$f(x) = \begin{cases} x^2 & \text{if } x \leq 1 \\ 2x-1 & \text{if } x > 1 \end{cases}$

Continuity Check:

$\lim_{x \to 1^-} f(x) = 1^2 = 1$

$\lim_{x \to 1^+} f(x) = 2(1)-1 = 1$

$f(1) = 1$ ✓ Continuous

Differentiability Check:

LHD: $\lim_{h \to 0^-} \frac{(1+h)^2 - 1}{h} = \lim_{h \to 0^-} (2 + h) = 2$

RHD: $\lim_{h \to 0^+} \frac{[2(1+h)-1] - 1}{h} = \lim_{h \to 0^+} 2 = 2$

✓ Differentiable at x=1

JEE Advanced 2023 Hard

Problem 1: Piecewise with Parameter

Find all values of $k$ for which $f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases}$ is differentiable at $x=0$.

Solution Approach:

Step 1: For differentiability at 0, function must be continuous at 0

$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin x}{x} = 1$

For continuity: $f(0) = \lim_{x \to 0} f(x) \Rightarrow k = 1$

Step 2: Check differentiability using first principles

$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{\frac{\sin h}{h} - 1}{h}$

$= \lim_{h \to 0} \frac{\sin h - h}{h^2} = \lim_{h \to 0} \frac{-\frac{h^3}{6} + \cdots}{h^2} = 0$

Step 3: Therefore, $f(x)$ is differentiable at $x=0$ only when $k=1$

Core Concept 2 Advanced

Greatest Integer Function [[x]] Behavior

Critical Insight:

The greatest integer function $f(x) = [x]$ is:

  • Discontinuous at all integer points
  • Not differentiable at integer points
  • Constant between integers, so derivative = 0 there

Example: $f(x) = x - [x]$ (Fractional Part Function)

At integer points:

Let $x = n$ where $n \in \mathbb{Z}$

LHD: $\lim_{h \to 0^-} \frac{(n+h) - [n+h] - (n - [n])}{h}$

$= \lim_{h \to 0^-} \frac{n+h - (n-1) - 1}{h} = \lim_{h \to 0^-} \frac{h}{h} = 1$

RHD: $\lim_{h \to 0^+} \frac{(n+h) - [n+h] - (n - [n])}{h}$

$= \lim_{h \to 0^+} \frac{n+h - n - 0}{h} = \lim_{h \to 0^+} \frac{h}{h} = 1$

Wait! Both limits equal 1? Let's check continuity first...

$\lim_{x \to n^-} (x - [x]) = n - (n-1) = 1$

$\lim_{x \to n^+} (x - [x]) = n - n = 0$

$f(n) = n - n = 0$

❌ Not continuous at integers ⇒ Not differentiable

JEE Main 2022 Medium

Problem 2: Composite with Greatest Integer

Find the number of points where $f(x) = [x] + \sqrt{x - [x]}$ is not differentiable in $[0, 3]$.

Solution Approach:

Step 1: Let $x = n + t$ where $n = [x]$ and $t = x - [x] \in [0, 1)$

Then $f(x) = n + \sqrt{t}$

Step 2: Check differentiability at integer points $x = 1, 2$

At $x = 1$:

LHD: $\lim_{h \to 0^-} \frac{f(1+h)-f(1)}{h} = \lim_{h \to 0^-} \frac{(0 + \sqrt{1+h}) - 1}{h}$

Since for $h \to 0^-$, $1+h \in (0,1)$, so $[1+h] = 0$

RHD: $\lim_{h \to 0^+} \frac{f(1+h)-f(1)}{h} = \lim_{h \to 0^+} \frac{(1 + \sqrt{h}) - 1}{h}$

Step 3: Calculate limits

LHD $= \lim_{h \to 0^-} \frac{\sqrt{1+h} - 1}{h} = \frac{1}{2}$ (using binomial)

RHD $= \lim_{h \to 0^+} \frac{\sqrt{h}}{h} = \lim_{h \to 0^+} \frac{1}{\sqrt{h}} = \infty$

LHD ≠ RHD ⇒ Not differentiable at x=1

Step 4: Similarly, not differentiable at x=2

At x=0: Only RHD exists, so not differentiable

Answer: 3 points (x=0,1,2)

🚀 Quick Solving Strategies

For Piecewise Functions:

  • Always check continuity before differentiability
  • Junction points are prime suspects
  • Calculate both LHD and RHD separately
  • Watch for parameter conditions

For Greatest Integer Functions:

  • Always discontinuous at integers
  • Use substitution $x = n + t$, $t \in [0,1)$
  • Check LHD and RHD at each integer
  • Remember fractional part function pattern

Problems 3-8 Available in Full Version

Includes 6 more challenging JEE problems with mixed piecewise and greatest integer functions

📝 Quick Self-Test

Try these similar problems to test your understanding:

1. Check differentiability of $f(x) = |x-1| + |x-2|$ at x=1 and x=2

2. Find points of non-differentiability for $f(x) = [x^2]$ in $[0, 2]$

3. Determine if $f(x) = \begin{cases} x^2\sin(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$ is differentiable at 0

Ready to Master All 8 Problems?

Get complete access to all problems with step-by-step video solutions and downloadable PDF

More Calculus Topics