Back to Calculus Topics
Integration Techniques Reading Time: 15 min Essential for JEE

Definite Integrals of Even and Odd Functions: Using Symmetry to Simplify

Master the powerful symmetry properties that can reduce complex definite integrals to simple calculations.

70%
Time Saved
3-5
Marks per Paper
2
Key Properties
100%
JEE Relevance

Why Symmetry Matters in Integration

Symmetry is one of the most powerful tools in calculus. When you recognize even or odd functions, you can drastically simplify definite integrals and solve problems in seconds that would otherwise take minutes.

🎯 JEE Advantage

  • Solve integration problems 3x faster by recognizing symmetry
  • Avoid lengthy calculations and potential calculation errors
  • Quick verification of integration results
  • Essential for advanced problems involving periodic functions and Fourier series
Symmetry Property Even Function

Even Functions: Symmetric About Y-Axis

Definition

A function $f(x)$ is even if $f(-x) = f(x)$ for all $x$ in its domain.

$$ f(-x) = f(x) $$

Geometric Interpretation: The graph is symmetric about the y-axis.

Common Even Functions

Polynomials with even powers:

  • $x^2$, $x^4$, $x^6$, ...
  • $x^2 + 3x^4 - 2$
  • $5x^6 - 2x^2 + 7$

Trigonometric functions:

  • $\cos x$
  • $\cos^2 x$
  • $\sec x$

Example: Verify Even Function

Show that $f(x) = x^4 - 2x^2 + 5$ is even.

Step 1: Find $f(-x)$:

$f(-x) = (-x)^4 - 2(-x)^2 + 5 = x^4 - 2x^2 + 5$

Step 2: Compare with $f(x)$:

$f(-x) = x^4 - 2x^2 + 5 = f(x)$ ✓

Conclusion: $f(x)$ is even.

Symmetry Property Odd Function

Odd Functions: Symmetric About Origin

Definition

A function $f(x)$ is odd if $f(-x) = -f(x)$ for all $x$ in its domain.

$$ f(-x) = -f(x) $$

Geometric Interpretation: The graph has rotational symmetry of 180° about the origin.

Common Odd Functions

Polynomials with odd powers:

  • $x$, $x^3$, $x^5$, ...
  • $x^3 - 2x$
  • $5x^5 + 3x^3 - x$

Trigonometric functions:

  • $\sin x$
  • $\tan x$
  • $\csc x$

Example: Verify Odd Function

Show that $f(x) = x^3 - 4x$ is odd.

Step 1: Find $f(-x)$:

$f(-x) = (-x)^3 - 4(-x) = -x^3 + 4x$

Step 2: Find $-f(x)$:

$-f(x) = -(x^3 - 4x) = -x^3 + 4x$

Step 3: Compare:

$f(-x) = -x^3 + 4x = -f(x)$ ✓

Conclusion: $f(x)$ is odd.

The Golden Rules of Symmetric Integration

Even Function Integration Property

For Even Functions

$$ \int_{-a}^{a} f(x) dx = 2\int_{0}^{a} f(x) dx $$

The area from $-a$ to $a$ is exactly twice the area from $0$ to $a$.

Example

Evaluate $\int_{-2}^{2} (x^4 + 3x^2 + 1) dx$

Step 1: Verify $f(x) = x^4 + 3x^2 + 1$ is even

Step 2: Apply property:

$\int_{-2}^{2} f(x) dx = 2\int_{0}^{2} (x^4 + 3x^2 + 1) dx$

Step 3: Calculate:

$= 2\left[\frac{x^5}{5} + x^3 + x\right]_{0}^{2}$

$= 2\left(\frac{32}{5} + 8 + 2\right) = 2\left(\frac{32+40+10}{5}\right) = \frac{164}{5}$

Odd Function Integration Property

For Odd Functions

$$ \int_{-a}^{a} f(x) dx = 0 $$

Positive and negative areas cancel each other out perfectly.

Example

Evaluate $\int_{-3}^{3} (x^5 - 2x^3 + x) dx$

Step 1: Verify $f(x) = x^5 - 2x^3 + x$ is odd

Step 2: Apply property:

$\int_{-3}^{3} f(x) dx = 0$

Step 3: No calculation needed! Answer is 0.

Handling Mixed Functions

Many functions are neither purely even nor purely odd. However, every function can be decomposed into even and odd parts.

Decomposition Theorem

Any function $f(x)$ can be written as:

$$ f(x) = f_{\text{even}}(x) + f_{\text{odd}}(x) $$

Where:

$$ f_{\text{even}}(x) = \frac{f(x) + f(-x)}{2} $$
$$ f_{\text{odd}}(x) = \frac{f(x) - f(-x)}{2} $$

Example: Mixed Function Integration

Evaluate $\int_{-2}^{2} (x^3 + 2x^2 + 3x + 4) dx$

Step 1: Identify even and odd parts:

Even: $2x^2 + 4$    Odd: $x^3 + 3x$

Step 2: Apply properties:

$\int_{-2}^{2} (x^3 + 3x) dx = 0$ (odd function)

$\int_{-2}^{2} (2x^2 + 4) dx = 2\int_{0}^{2} (2x^2 + 4) dx$ (even function)

Step 3: Calculate even part:

$2\int_{0}^{2} (2x^2 + 4) dx = 2\left[\frac{2x^3}{3} + 4x\right]_{0}^{2}$

$= 2\left(\frac{16}{3} + 8\right) = 2\left(\frac{16+24}{3}\right) = \frac{80}{3}$

Final Answer: $\frac{80}{3}$

JEE-Level Problems with Symmetry

JEE Main 2023 Medium

Problem 1: Trigonometric Symmetry

Evaluate $\int_{-\pi/4}^{\pi/4} \frac{\sin^3 x + \cos^3 x}{e^x + 1} dx$

Solution Approach

Step 1: Recognize the property:

For integrals of form $\int_{-a}^{a} \frac{f(x)}{e^x + 1} dx$, use:

$\int_{-a}^{a} \frac{f(x)}{e^x + 1} dx = \int_{0}^{a} f(x) dx$ if $f(x)$ is even

Step 2: Check if numerator is even:

Let $g(x) = \sin^3 x + \cos^3 x$

$g(-x) = \sin^3(-x) + \cos^3(-x) = -\sin^3 x + \cos^3 x \neq g(x)$

So $g(x)$ is neither even nor odd

Step 3: Use alternative approach with property:

$\int_{-a}^{a} \frac{f(x)}{e^x + 1} dx = \int_{0}^{a} f(x) dx$ when $f(x) + f(-x) = f(x)$

Here, $g(x) + g(-x) = 2\cos^3 x$, which is even

Step 4: Apply the property:

$\int_{-\pi/4}^{\pi/4} \frac{\sin^3 x + \cos^3 x}{e^x + 1} dx = \int_{0}^{\pi/4} (\sin^3 x + \cos^3 x) dx$

JEE Advanced 2022 Hard

Problem 2: Absolute Value Symmetry

Evaluate $\int_{-5}^{5} |x^3 - 4x| dx$

Solution Approach

Step 1: Note that $|x^3 - 4x|$ is even:

$|(-x)^3 - 4(-x)| = |-x^3 + 4x| = |-(x^3 - 4x)| = |x^3 - 4x|$

Step 2: Apply even function property:

$\int_{-5}^{5} |x^3 - 4x| dx = 2\int_{0}^{5} |x^3 - 4x| dx$

Step 3: Find where $x^3 - 4x$ changes sign in $[0,5]$:

$x^3 - 4x = x(x^2 - 4) = x(x-2)(x+2)$

In $[0,5]$: negative on $(0,2)$, positive on $(2,5]$

Step 4: Split the integral:

$2\left[\int_{0}^{2} -(x^3 - 4x) dx + \int_{2}^{5} (x^3 - 4x) dx\right]$

Step 5: Calculate (solution continues...)

📋 Quick Reference Guide

Even Function Checklist

  • $f(-x) = f(x)$ for all $x$
  • Graph symmetric about y-axis
  • $\int_{-a}^{a} f(x) dx = 2\int_{0}^{a} f(x) dx$
  • Common examples: $x^{2n}$, $\cos x$, $\cosh x$

Odd Function Checklist

  • $f(-x) = -f(x)$ for all $x$
  • Graph symmetric about origin
  • $\int_{-a}^{a} f(x) dx = 0$
  • Common examples: $x^{2n+1}$, $\sin x$, $\tan x$

💡 Pro Tip

When you see symmetric limits $[-a,a]$, always check if the function is even or odd before integrating. This can save 2-3 minutes per problem!

🎯 Test Your Understanding

Try these problems using symmetry properties:

1. Evaluate $\int_{-3}^{3} (x^4 \cos x + x^3 \sin x) dx$

Hint: Decompose into even and odd parts

2. Evaluate $\int_{-1}^{1} \frac{x^5 + 2x^3}{e^{x^2} + 1} dx$

Hint: Check if the function is odd

3. Evaluate $\int_{-\pi/2}^{\pi/2} \sin^3 x \cos^2 x dx$

Hint: Analyze the parity of the function

Master Symmetry in Integration!

These techniques will save you valuable time and increase your accuracy in JEE calculus problems

More Integration Techniques