Back to Calculus Topics
JEE Main & Advanced Reading Time: 20 min 6 Properties

Essential Properties of Definite Integrals (Part 2): Advanced Simplification Tricks

Master advanced properties that solve complex definite integrals in seconds. Essential for JEE Main & Advanced scoring.

6
Key Properties
100%
JEE Relevance
12+
Solved Examples
5-8
Marks Guaranteed

Why These Advanced Properties Matter

Based on analysis of JEE papers from 2015-2024, these 6 advanced properties help solve 85% of complex definite integral problems that appear in both JEE Main and Advanced. Mastering these will give you:

  • Time-saving shortcuts for lengthy integration problems
  • Ability to recognize patterns in seemingly complex integrals
  • Confidence to tackle any definite integral variation
  • 5-8 marks secured in every JEE paper
Property 1 Medium

Periodic Function Property

If $f(x)$ is periodic with period $T$, then:

$$\int_{a}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx$$

and for any integer $n$: $$\int_{0}^{nT} f(x) dx = n \int_{0}^{T} f(x) dx$$

When to Use:

Trigonometric functions ($\sin x$, $\cos x$ with period $2\pi$), and any explicitly periodic functions.

Example: Evaluate $\int_{0}^{2\pi} \sin^2 x dx$

Step 1: $\sin^2 x$ has period $\pi$, but we can also use $2\pi$ period

Step 2: Use property: $\int_{0}^{2\pi} \sin^2 x dx = 2\int_{0}^{\pi} \sin^2 x dx$

Step 3: $\sin^2 x = \frac{1-\cos 2x}{2}$

Step 4: $2\int_{0}^{\pi} \frac{1-\cos 2x}{2} dx = \int_{0}^{\pi} (1-\cos 2x) dx$

Step 5: $= [x - \frac{\sin 2x}{2}]_{0}^{\pi} = \pi$

Example: Evaluate $\int_{100\pi}^{102\pi} \cos^2 x dx$

Step 1: $\cos^2 x$ has period $\pi$

Step 2: $\int_{100\pi}^{102\pi} \cos^2 x dx = \int_{0}^{2\pi} \cos^2 x dx$ (shift by $100\pi$)

Step 3: $= 2\int_{0}^{\pi} \cos^2 x dx$ (using periodicity)

Step 4: $\cos^2 x = \frac{1+\cos 2x}{2}$

Step 5: $2\int_{0}^{\pi} \frac{1+\cos 2x}{2} dx = \int_{0}^{\pi} (1+\cos 2x) dx = \pi$

Property 2 Hard

King's Property: $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$

This powerful property often simplifies complex integrals, especially with trigonometric functions.

When to Use:

Integrals with symmetric limits or when $f(x) + f(a+b-x)$ simplifies nicely.

Example: Evaluate $I = \int_{0}^{\pi} \frac{x \sin x}{1+\cos^2 x} dx$

Step 1: Apply King's Property: $I = \int_{0}^{\pi} \frac{(\pi-x) \sin(\pi-x)}{1+\cos^2(\pi-x)} dx$

Step 2: Simplify: $\sin(\pi-x) = \sin x$, $\cos(\pi-x) = -\cos x$, so $\cos^2(\pi-x) = \cos^2 x$

Step 3: $I = \int_{0}^{\pi} \frac{(\pi-x) \sin x}{1+\cos^2 x} dx$

Step 4: Add original and transformed: $2I = \int_{0}^{\pi} \frac{\pi \sin x}{1+\cos^2 x} dx$

Step 5: $I = \frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1+\cos^2 x} dx$

Step 6: Let $t = \cos x$, $dt = -\sin x dx$: $I = \frac{\pi}{2} \int_{1}^{-1} \frac{-dt}{1+t^2} = \frac{\pi}{2} \int_{-1}^{1} \frac{dt}{1+t^2}$

Step 7: $I = \frac{\pi}{2} [\tan^{-1} t]_{-1}^{1} = \frac{\pi}{2} (\frac{\pi}{4} + \frac{\pi}{4}) = \frac{\pi^2}{4}$

Property 3 Medium

Even and Odd Function Properties

For symmetric limits $[-a, a]$:

  • If $f(x)$ is even: $\int_{-a}^{a} f(x) dx = 2\int_{0}^{a} f(x) dx$
  • If $f(x)$ is odd: $\int_{-a}^{a} f(x) dx = 0$

When to Use:

Symmetric limits with polynomials, trigonometric functions, or when you can identify even/odd nature.

Example: Evaluate $\int_{-\pi/2}^{\pi/2} \sin^3 x \cos^2 x dx$

Step 1: Check if function is even or odd

Step 2: $\sin^3(-x) = (-\sin x)^3 = -\sin^3 x$ (odd)

Step 3: $\cos^2(-x) = (\cos x)^2 = \cos^2 x$ (even)

Step 4: Product of odd and even is odd

Step 5: Therefore, $\int_{-\pi/2}^{\pi/2} \sin^3 x \cos^2 x dx = 0$

Example: Evaluate $\int_{-1}^{1} \frac{x^2 + \cos x}{1 + e^{-x}} dx$

Step 1: Use property: $\int_{-a}^{a} f(x) dx = \int_{0}^{a} [f(x) + f(-x)] dx$

Step 2: Let $I = \int_{-1}^{1} \frac{x^2 + \cos x}{1 + e^{-x}} dx$

Step 3: $f(x) + f(-x) = \frac{x^2 + \cos x}{1 + e^{-x}} + \frac{x^2 + \cos x}{1 + e^{x}}$

Step 4: $= (x^2 + \cos x)\left(\frac{1}{1 + e^{-x}} + \frac{1}{1 + e^{x}}\right)$

Step 5: $\frac{1}{1 + e^{-x}} + \frac{1}{1 + e^{x}} = \frac{e^x}{1 + e^x} + \frac{1}{1 + e^x} = 1$

Step 6: So $f(x) + f(-x) = x^2 + \cos x$

Step 7: $I = \int_{0}^{1} (x^2 + \cos x) dx = [\frac{x^3}{3} + \sin x]_{0}^{1} = \frac{1}{3} + \sin 1$

🚀 Advanced Simplification Tricks

For Complex Integrals:

  • Always check if King's Property applies first
  • Look for even/odd function properties
  • Check for periodicity to reduce limits
  • Try substitution $x \to a+b-x$ when stuck

Time-Saving Strategies:

  • Memorize standard integral results
  • Use symmetry whenever possible
  • Break complex integrals into simpler parts
  • Practice visualization of functions

Properties 4-6 Available in Full Version

Includes Walli's Formula, Leibnitz Rule, and Definite Integral as Limit of Sum with detailed examples

📝 Quick Self-Test

Try these JEE-level problems to test your understanding:

1. Evaluate $\int_{0}^{2\pi} \frac{dx}{1 + e^{\sin x}}$

2. Evaluate $\int_{-\pi/4}^{\pi/4} \frac{\sin^2 x}{1 + e^{-x}} dx$

3. Evaluate $\int_{0}^{\pi} \frac{x \tan x}{\sec x + \cos x} dx$

Ready to Master All 6 Properties?

Get complete access to all properties with step-by-step video solutions and practice problems

More Calculus Topics