The Wallis Formula: Your Shortcut to Integrals of Powers of Sine and Cosine
Stop using integration by parts repeatedly. Master this powerful formula to solve ∫sinⁿx dx and ∫cosⁿx dx in seconds.
Why You Need the Wallis Formula
Traditional methods for evaluating $\int \sin^n x dx$ and $\int \cos^n x dx$ require:
- Repeated integration by parts - Time consuming and error-prone
- Complex trigonometric identities - Hard to remember and apply
- Lengthy calculations - Wastes precious exam time
- Higher chance of mistakes - Each step introduces potential errors
The Wallis Formula gives you a direct result without these complications.
🎯 JEE Exam Advantage
Wallis Formula appears in definite integrals, area problems, and volume calculations. Mastering it can save you 5-10 minutes per problem in JEE Main and Advanced.
1. Understanding the Wallis Formula
The Wallis Formula (Definite Integrals)
For positive integers n:
Where $n!!$ denotes the double factorial:
- $n!! = n \cdot (n-2) \cdot (n-4) \cdots $ (until 2 or 1)
- Example: $6!! = 6 \cdot 4 \cdot 2 = 48$
- Example: $7!! = 7 \cdot 5 \cdot 3 \cdot 1 = 105$
Simplified Form (Easy to Remember)
Even Powers:
Odd Powers:
2. Step-by-Step Examples
Example 1: Even Power (n = 4)
Evaluate $\int_0^{\frac{\pi}{2}} \sin^4 x dx$
Step 1: Identify n = 4 (even)
Step 2: Apply formula for even powers:
Step 3: Calculate double factorials:
$3!! = 3 \cdot 1 = 3$
$4!! = 4 \cdot 2 = 8$
Step 4: Substitute:
✅ Final Answer: $\frac{3\pi}{16}$
Example 2: Odd Power (n = 5)
Evaluate $\int_0^{\frac{\pi}{2}} \cos^5 x dx$
Step 1: Identify n = 5 (odd)
Step 2: Apply formula for odd powers:
Step 3: Calculate double factorials:
$4!! = 4 \cdot 2 = 8$
$5!! = 5 \cdot 3 \cdot 1 = 15$
Step 4: Substitute:
✅ Final Answer: $\frac{8}{15}$
3. Quick Reference Table
| Integral | Value | Time Saved |
|---|---|---|
| $\int_0^{\frac{\pi}{2}} \sin^2 x dx$ | $\frac{\pi}{4}$ | 2-3 min |
| $\int_0^{\frac{\pi}{2}} \sin^3 x dx$ | $\frac{2}{3}$ | 3-4 min |
| $\int_0^{\frac{\pi}{2}} \sin^4 x dx$ | $\frac{3\pi}{16}$ | 4-5 min |
| $\int_0^{\frac{\pi}{2}} \sin^5 x dx$ | $\frac{8}{15}$ | 5-6 min |
| $\int_0^{\frac{\pi}{2}} \sin^6 x dx$ | $\frac{5\pi}{32}$ | 6-7 min |
💡 Memory Aid
Even powers: Result has $\pi$ and pattern: $\frac{1}{2}\cdot\frac{\pi}{2}, \frac{1\cdot3}{2\cdot4}\cdot\frac{\pi}{2}, \frac{1\cdot3\cdot5}{2\cdot4\cdot6}\cdot\frac{\pi}{2}, \dots$
Odd powers: No $\pi$, pattern: $\frac{2}{3}, \frac{2\cdot4}{3\cdot5}, \frac{2\cdot4\cdot6}{3\cdot5\cdot7}, \dots$
4. Special Cases & Extensions
Mixed Powers: $\int_0^{\frac{\pi}{2}} \sin^m x \cos^n x dx$
The Wallis Formula extends to mixed powers:
When m and n are positive integers:
Different Limits
Symmetric limits:
$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^n x dx = \begin{cases} 0 & \text{n odd} \\ 2\int_0^{\frac{\pi}{2}} \sin^n x dx & \text{n even} \end{cases}$
Full period:
$\int_0^{2\pi} \sin^n x dx = \begin{cases} 0 & \text{n odd} \\ 4\int_0^{\frac{\pi}{2}} \sin^n x dx & \text{n even} \end{cases}$
5. Common Mistakes to Avoid
⚠️ Critical Errors Students Make
Mistake 1: Forgetting the $\frac{\pi}{2}$ factor
For even powers, students often calculate $\frac{(n-1)!!}{n!!}$ but forget to multiply by $\frac{\pi}{2}$
Mistake 2: Confusing even and odd cases
Applying the even power formula to odd powers (or vice versa) gives completely wrong results
Mistake 3: Incorrect double factorial calculation
$n!!$ is NOT $(n!)!$. Remember: $n!! = n \cdot (n-2) \cdot (n-4) \cdots$
Mistake 4: Using wrong limits
Wallis Formula specifically applies to $[0, \frac{\pi}{2}]$. For other limits, you need to adjust accordingly
6. Practice Problems
Test Your Understanding
1. $\int_0^{\frac{\pi}{2}} \sin^6 x dx$
2. $\int_0^{\frac{\pi}{2}} \cos^7 x dx$
3. $\int_0^{\frac{\pi}{2}} \sin^4 x \cos^2 x dx$
4. $\int_0^{\pi} \sin^5 x dx$
Answers:
🎯 JEE Exam Strategy
When to Use Wallis Formula:
- Definite integrals with limits $0$ to $\frac{\pi}{2}$
- Powers of sine or cosine (or both)
- Area under trigonometric curves
- Volume of revolution problems
- Fourier series coefficients
Time-Saving Approach:
- Memorize patterns for n=2 to n=6
- Practice mental calculation of double factorials
- Recognize symmetric limits quickly
- Combine with substitution for complex integrals
7. Quick Revision Sheet
Key Formulas
$\int_0^{\frac{\pi}{2}} \sin^{2m} x dx = \frac{(2m-1)!!}{(2m)!!} \cdot \frac{\pi}{2}$
$\int_0^{\frac{\pi}{2}} \sin^{2m+1} x dx = \frac{(2m)!!}{(2m+1)!!}$
Same for $\cos^n x$
$\int_0^{\frac{\pi}{2}} \sin^m x \cos^n x dx = \frac{(m-1)!!(n-1)!!}{(m+n)!!} \times K$
Common Values
$\sin^2, \cos^2$: $\frac{\pi}{4}$
$\sin^3, \cos^3$: $\frac{2}{3}$
$\sin^4, \cos^4$: $\frac{3\pi}{16}$
$\sin^5, \cos^5$: $\frac{8}{15}$
$\sin^6, \cos^6$: $\frac{5\pi}{32}$
Mastered the Wallis Formula?
Continue your calculus journey with more powerful integration techniques