Back to Calculus Topics
Advanced Calculus Reading Time: 15 min 5 Key Techniques

Inequalities in Definite Integrals: How to Compare Without Calculating

Master JEE-advanced techniques to compare integrals using properties, inequalities, and smart observations without full computation.

3-5
Questions per Year
70%
Time Saved
5
Key Techniques
100%
Conceptual Approach

Why Learn Integral Comparison Techniques?

JEE Advanced frequently tests your ability to compare definite integrals without explicit calculation. These problems assess deep conceptual understanding rather than computational skill.

🎯 JEE Examination Pattern

  • Single Correct: "Which integral is larger?" type questions
  • Multiple Correct: Comparing multiple integrals using properties
  • Integer Type: Finding relationships between integrals
  • Comprehension: Applying comparison theorems in multi-step problems

Fundamental Comparison Theorem

If $f(x) \geq g(x)$ for all $x \in [a,b]$, then

$$ \int_a^b f(x)dx \geq \int_a^b g(x)dx $$

Equality holds only if $f(x) = g(x)$ for all $x \in [a,b]$

💡 Key Insight

This is the most powerful tool for comparing integrals. The strategy is to:

  • Find the difference between the two functions
  • Analyze the sign of this difference on the interval
  • Use function properties (monotonicity, concavity, symmetry)
JEE Advanced 2022 Medium

Technique 1: Using Monotonicity

Problem Statement

Compare $I_1 = \int_0^1 x^2 dx$ and $I_2 = \int_0^1 x^3 dx$

Solution Using Monotonicity

Step 1: For $x \in [0,1]$, we have $0 \leq x \leq 1$

Step 2: Multiply both sides by $x^2$ (non-negative): $0 \leq x^3 \leq x^2$

Step 3: Therefore, $x^2 \geq x^3$ for all $x \in [0,1]$

Step 4: By comparison theorem: $\int_0^1 x^2 dx \geq \int_0^1 x^3 dx$

Conclusion: $I_1 \geq I_2$

🎯 General Strategy

  • If $f(x)$ is increasing and $g(x)$ is decreasing, compare at endpoints
  • Use known inequalities: $x^n \geq x^m$ when $n < m$ and $0 \leq x \leq 1$
  • For trigonometric functions, use range properties: $\sin x \leq x \leq \tan x$ for $x \in [0,\pi/2)$
JEE Advanced 2021 Hard

Technique 2: Using Symmetry Properties

Problem Statement

Compare $I_1 = \int_0^{\pi/2} \sin x dx$ and $I_2 = \int_0^{\pi/2} \cos x dx$

Solution Using Symmetry

Step 1: Use substitution $x \to \frac{\pi}{2} - x$ in $I_2$:

$$I_2 = \int_0^{\pi/2} \cos x dx = \int_{\pi/2}^0 \cos\left(\frac{\pi}{2} - t\right)(-dt) = \int_0^{\pi/2} \sin t dt = I_1$$

Step 2: Therefore, $I_1 = I_2$ exactly!

🎯 Symmetry Properties to Remember

  • $\int_0^a f(x)dx = \int_0^a f(a-x)dx$ (Standard property)
  • For even functions: $\int_{-a}^a f(x)dx = 2\int_0^a f(x)dx$
  • For odd functions: $\int_{-a}^a f(x)dx = 0$
  • $\int_0^{\pi/2} \sin^n x dx = \int_0^{\pi/2} \cos^n x dx$
JEE Main 2023 Medium

Technique 3: Using Function Bounds

Problem Statement

Compare $I_1 = \int_0^1 e^x dx$ and $I_2 = \int_0^1 (1 + x + \frac{x^2}{2}) dx$

Solution Using Series Bounds

Step 1: Recall Taylor series: $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$

Step 2: For $x \in [0,1]$, all terms are non-negative, so:

$$e^x \geq 1 + x + \frac{x^2}{2}$$

Step 3: By comparison theorem:

$$\int_0^1 e^x dx \geq \int_0^1 \left(1 + x + \frac{x^2}{2}\right) dx$$

Conclusion: $I_1 \geq I_2$

🎯 Common Bounds to Remember

  • $1 - x \leq e^{-x} \leq 1$ for $x \in [0,1]$
  • $x - \frac{x^3}{6} \leq \sin x \leq x$ for $x \geq 0$
  • $1 - \frac{x^2}{2} \leq \cos x \leq 1$ for $x \in [0,\pi/2]$
  • $\frac{x}{1+x} \leq \ln(1+x) \leq x$ for $x > -1$

📚 Quick Reference: Integral Inequalities

Basic Inequalities

  • If $m \leq f(x) \leq M$ on $[a,b]$, then: $$m(b-a) \leq \int_a^b f(x)dx \leq M(b-a)$$
  • $\left|\int_a^b f(x)dx\right| \leq \int_a^b |f(x)|dx$
  • Cauchy-Schwarz: $\left(\int_a^b f(x)g(x)dx\right)^2 \leq \int_a^b f^2(x)dx \cdot \int_a^b g^2(x)dx$

Advanced Properties

  • First Mean Value Theorem: $$\int_a^b f(x)dx = f(c)(b-a) \text{ for some } c \in [a,b]$$
  • If $f$ is convex: $f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a}\int_a^b f(x)dx \leq \frac{f(a)+f(b)}{2}$
  • Chebyshev's inequality for monotonic functions
JEE Advanced 2020 Hard

Technique 4: Smart Substitutions

Problem Statement

Compare $I_1 = \int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx$ and $I_2 = \int_0^{\pi/2} \frac{\cos x}{\sin x + \cos x} dx$

Solution Using Substitution

Step 1: Use substitution $x \to \frac{\pi}{2} - x$ in $I_1$:

$$I_1 = \int_0^{\pi/2} \frac{\sin\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} dx = \int_0^{\pi/2} \frac{\cos x}{\cos x + \sin x} dx = I_2$$

Step 2: Therefore, $I_1 = I_2$

Step 3: Also, $I_1 + I_2 = \int_0^{\pi/2} 1 dx = \frac{\pi}{2}$

Step 4: So $I_1 = I_2 = \frac{\pi}{4}$

🎯 Useful Substitutions

  • $x \to a - x$ for integrals over $[0,a]$
  • $x \to \frac{\pi}{2} - x$ for trigonometric integrals
  • $x \to \frac{1}{t}$ for integrals involving reciprocals
  • $x \to \tan t$ for integrals with $1+x^2$ in denominator
JEE Main 2022 Medium

Technique 5: Using Integral Properties

Problem Statement

Compare $I_1 = \int_0^1 x(1-x)^n dx$ and $I_2 = \int_0^1 x^n(1-x) dx$

Solution Using Beta Function Properties

Step 1: Recognize Beta function form:

$$I_1 = \int_0^1 x^{2-1}(1-x)^{n+1-1} dx = B(2, n+1)$$

$$I_2 = \int_0^1 x^{n+1-1}(1-x)^{2-1} dx = B(n+1, 2)$$

Step 2: Use symmetry: $B(m,n) = B(n,m)$

Step 3: Therefore, $I_1 = I_2$ for all $n$

🎯 Important Integral Properties

  • Beta function: $B(m,n) = \int_0^1 x^{m-1}(1-x)^{n-1} dx = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$
  • $B(m,n) = B(n,m)$ (Symmetry)
  • $\int_0^{\pi/2} \sin^{2m-1}x\cos^{2n-1}x dx = \frac{1}{2}B(m,n)$
  • $\int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx = B(m,n)$

📝 Practice Problems

Test your understanding with these JEE-level problems:

1. Compare without calculation: $\int_0^1 e^{-x^2} dx$ and $\int_0^1 e^{-x} dx$

Hint: Compare $e^{-x^2}$ and $e^{-x}$ on $[0,1]$

2. Show that $\int_0^{\pi/2} \sin^n x dx = \int_0^{\pi/2} \cos^n x dx$ using substitution

Hint: Use $x \to \frac{\pi}{2} - x$

3. Prove: $\int_0^1 \frac{dx}{\sqrt{1-x^2}} \geq \int_0^1 \frac{dx}{\sqrt{1-x^4}}$

Hint: Compare denominators for $x \in [0,1]$

⚠️ Common Mistakes to Avoid

Conceptual Errors

  • Assuming monotonicity without verification - Always check if the inequality holds throughout the interval
  • Ignoring endpoint behavior - Functions might behave differently at boundaries
  • Misapplying symmetry properties - Not all integrals over symmetric intervals are equal

Technical Errors

  • Wrong substitution limits - Always check how limits transform
  • Forgetting absolute values - When using $|f(x)| \geq f(x)$
  • Misremembering standard inequalities - Practice common bounds regularly

🎯 Mastery Checklist

Techniques to Master

  • ✓ Function comparison on intervals
  • ✓ Symmetry and substitution methods
  • ✓ Using known bounds and inequalities
  • ✓ Beta and Gamma function properties
  • ✓ Mean value theorems for integrals

Problem-Solving Strategy

  • ✓ Always check the interval first
  • ✓ Look for symmetry patterns
  • ✓ Try simple substitutions
  • ✓ Use known inequalities
  • ✓ Verify with special cases

Ready to Master Integral Inequalities?

Practice with 50+ JEE-level problems with detailed solutions

More Integration Topics