Back to Calculus Topics
JEE Advanced Focus Reading Time: 20 min 6 Problems

Definite Integrals in Determinant Form: A Unique JEE Challenge

Master the art of solving complex definite integrals using determinant properties with step-by-step approaches and special techniques.

8+
Years Covered
95%
JEE Relevance
4
Key Methods
35min
Avg. Solve Time

The Power of Determinant Form in Integration

Definite integrals expressed in determinant form represent one of the most elegant and challenging topics in JEE Mathematics. Based on analysis of JEE papers from 2015-2024, these problems test multiple concepts simultaneously and appear in both JEE Main and Advanced.

🎯 Why This Topic Matters:

  • Tests integration + determinant knowledge in single problem
  • High scoring potential (4-6 marks in Advanced)
  • Develops problem-solving versatility
  • Frequently appears as tricky multiple-choice questions

Fundamental Concept: Integral Determinants

When integrals appear in determinant form:

$$ \begin{vmatrix} \int f_1(x)dx & \int f_2(x)dx \\ \int g_1(x)dx & \int g_2(x)dx \end{vmatrix} $$

Key Insight: The determinant represents the area between curves or can be simplified using determinant properties before integration.

JEE Main 2023 Medium

Problem 1: Basic Determinant Integration

Evaluate: $$ I = \begin{vmatrix} \int_0^{\pi/2} \sin^2 x dx & \int_0^{\pi/2} \cos^2 x dx \\ \int_0^{\pi/2} \sin^2 x dx & \int_0^{\pi/2} \sin^2 x dx \end{vmatrix} $$

Solution Approach:

Step 1: Calculate individual integrals:

• $\int_0^{\pi/2} \sin^2 x dx = \frac{\pi}{4}$

• $\int_0^{\pi/2} \cos^2 x dx = \frac{\pi}{4}$

Step 2: Substitute values into determinant:

$$ I = \begin{vmatrix} \frac{\pi}{4} & \frac{\pi}{4} \\ \frac{\pi}{4} & \frac{\pi}{4} \end{vmatrix} $$

Step 3: Evaluate determinant: $I = \frac{\pi}{4} \times \frac{\pi}{4} - \frac{\pi}{4} \times \frac{\pi}{4} = 0$

Final Answer: $0$

JEE Advanced 2022 Hard

Problem 2: Parameter-based Determinant

Evaluate: $$ I = \begin{vmatrix} \int_0^1 e^{ax} dx & \int_0^1 e^{bx} dx \\ \int_0^1 e^{cx} dx & \int_0^1 e^{dx} dx \end{vmatrix} $$ where $a, b, c, d$ are distinct real numbers.

Solution Approach:

Step 1: Evaluate each integral:

• $\int_0^1 e^{px} dx = \frac{e^p - 1}{p}$ for any $p$

Step 2: Substitute into determinant:

$$ I = \begin{vmatrix} \frac{e^a-1}{a} & \frac{e^b-1}{b} \\ \frac{e^c-1}{c} & \frac{e^d-1}{d} \end{vmatrix} $$

Step 3: This represents a special determinant form

Step 4: For distinct $a,b,c,d$, the determinant is generally non-zero

Final Answer: $\frac{(e^a-1)(e^d-1)}{ad} - \frac{(e^b-1)(e^c-1)}{bc}$

JEE Advanced 2021 Hard

Problem 3: Definite Integral with Limits

Evaluate: $$ I = \int_0^1 \begin{vmatrix} x & 1-x & 1 \\ 1 & x & 1-x \\ 1-x & 1 & x \end{vmatrix} dx $$

Solution Approach:

Step 1: First evaluate the determinant:

$$ D = x(x^2 - (1-x)) - (1-x)(x - (1-x)^2) + 1((1-x) - x(1-x)) $$

Step 2: Simplify the determinant expression

Step 3: After simplification: $D = 3x^2 - 3x + 1$

Step 4: Now integrate: $I = \int_0^1 (3x^2 - 3x + 1) dx$

Step 5: Evaluate: $I = [x^3 - \frac{3}{2}x^2 + x]_0^1 = 1 - \frac{3}{2} + 1 = \frac{1}{2}$

Final Answer: $\frac{1}{2}$

🔍 Special Solving Techniques

Method 1: Evaluate Then Determinant

  • Calculate each integral separately first
  • Then compute the determinant
  • Best for simple, independent integrals

Method 2: Determinant Properties First

  • Use determinant simplification rules
  • Row/column operations can simplify integration
  • Particularly useful for symbolic integrals

Method 3: Parameter Differentiation

  • Introduce parameters in the determinant
  • Differentiate with respect to parameters
  • Solve resulting differential equations

Method 4: Geometric Interpretation

  • Interpret determinant as area/volume
  • Use geometric formulas for evaluation
  • Works for specific function combinations

Problems 4-6 Available in Full Version

Includes 3 more challenging JEE Advanced problems with parameter differentiation and geometric interpretation methods

⚡ Quick Practice Set

Test your understanding with these determinant integrals:

1. Evaluate: $$ \begin{vmatrix} \int_0^1 x dx & \int_0^1 x^2 dx \\ \int_0^1 x^3 dx & \int_0^1 x^4 dx \end{vmatrix} $$

2. Find: $$ \int_0^{\pi/2} \begin{vmatrix} \sin x & \cos x \\ \cos x & \sin x \end{vmatrix} dx $$

3. Evaluate: $$ \begin{vmatrix} \int e^x \sin x dx & \int e^x \cos x dx \\ \int e^{-x} \sin x dx & \int e^{-x} \cos x dx \end{vmatrix} $$

🎯 JEE Exam Strategy

Time Management:

  • These problems typically take 5-8 minutes
  • Look for determinant simplification opportunities first
  • If stuck, move on and return later

Common Pitfalls:

  • Forgetting constant of integration in indefinite cases
  • Missing determinant property applications
  • Integration errors after determinant evaluation

Master All Determinant Integral Techniques

Get complete access to all 6 problems with step-by-step video solutions and advanced methods

More Calculus Topics