Back to Calculus Topics
JEE Main & Advanced Reading Time: 12 min Core Concept

Definite Integral as a Limit of a Sum: The Conceptual Foundation

Understanding the fundamental definition that connects integration with summation - essential for JEE success.

100%
JEE Relevance
5+
Visualizations
3
Approach Types
15min
Mastery Time

Why This Concept is Crucial for JEE

The definition of definite integral as a limit of sum forms the foundation of integral calculus and appears directly in JEE problems. Understanding this concept helps you:

  • Solve limit problems that are actually integral in disguise
  • Understand the geometric meaning of integration as area
  • Convert complex sums into manageable integrals
  • Grasp advanced concepts like Riemann sums in higher mathematics
Core Definition Fundamental

The Formal Definition

$$\int_a^b f(x)dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x$$

Where:

  • $\Delta x = \frac{b-a}{n}$ (width of each subinterval)
  • $x_i^*$ is any point in the $i^{th}$ subinterval $[x_{i-1}, x_i]$
  • $x_i = a + i\Delta x$
  • $n$ is the number of subintervals

📐 Geometric Interpretation:

The definite integral represents the signed area under the curve $y = f(x)$ from $x = a$ to $x = b$.

Visualizing the Process:

Small $n$
Poor approximation
Medium $n$
Better approximation
Large $n$
Excellent approximation
$n \to \infty$
Exact area
Method 1 Medium

Types of Riemann Sums

Different ways to choose the sample point $x_i^*$ give different Riemann sums:

Left Riemann Sum:

$x_i^* = x_{i-1}$ (left endpoint of each subinterval)

Formula: $\sum_{i=1}^n f(x_{i-1}) \Delta x$

Right Riemann Sum:

$x_i^* = x_i$ (right endpoint of each subinterval)

Formula: $\sum_{i=1}^n f(x_i) \Delta x$

Midpoint Riemann Sum:

$x_i^* = \frac{x_{i-1} + x_i}{2}$ (midpoint of each subinterval)

Formula: $\sum_{i=1}^n f\left(\frac{x_{i-1} + x_i}{2}\right) \Delta x$

JEE Insight:

For JEE problems, the right Riemann sum is most commonly used because it leads to simpler algebraic manipulation.

Method 2 Easy

The Standard JEE Formula

$$\int_0^1 f(x)dx = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^n f\left(\frac{r}{n}\right)$$

Derivation:

For $[0, 1]$ interval:

• $\Delta x = \frac{1-0}{n} = \frac{1}{n}$

• $x_r = 0 + r\cdot\frac{1}{n} = \frac{r}{n}$

• Using right Riemann sum: $x_r^* = x_r = \frac{r}{n}$

• Therefore: $\int_0^1 f(x)dx = \lim_{n \to \infty} \sum_{r=1}^n f\left(\frac{r}{n}\right) \cdot \frac{1}{n}$

Example: Evaluate $\lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^n \frac{1}{1 + \frac{r}{n}}$

Step 1: Recognize the pattern: $\frac{1}{n} \sum_{r=1}^n f\left(\frac{r}{n}\right)$

Step 2: Identify $f(x) = \frac{1}{1+x}$

Step 3: Apply formula: $\int_0^1 \frac{1}{1+x} dx$

Step 4: Evaluate: $[\ln|1+x|]_0^1 = \ln 2 - \ln 1 = \ln 2$

Step 5: Answer: $\ln 2$

Method 3 Medium

General Interval $[a, b]$

$$\int_a^b f(x)dx = \lim_{n \to \infty} \frac{b-a}{n} \sum_{r=1}^n f\left(a + \frac{r(b-a)}{n}\right)$$

Key Points:

  • $\Delta x = \frac{b-a}{n}$
  • $x_r = a + r\cdot\frac{b-a}{n}$
  • Using right Riemann sum approach

Example: Evaluate $\lim_{n \to \infty} \frac{2}{n} \sum_{r=1}^n \sqrt{4 + \frac{2r}{n}}$

Step 1: Compare with general formula: $\frac{b-a}{n} \sum f\left(a + \frac{r(b-a)}{n}\right)$

Step 2: Here $\frac{b-a}{n} = \frac{2}{n} \Rightarrow b-a = 2$

Step 3: $a + \frac{r(b-a)}{n} = 4 + \frac{2r}{n} \Rightarrow a = 4$

Step 4: Since $b-a=2$ and $a=4$, then $b=6$

Step 5: $f(x) = \sqrt{x}$

Step 6: Integral: $\int_4^6 \sqrt{x} dx = \left[\frac{2}{3}x^{3/2}\right]_4^6$

Step 7: Evaluate: $\frac{2}{3}(6\sqrt{6} - 4\sqrt{4}) = \frac{2}{3}(6\sqrt{6} - 8)$

🚀 Problem-Solving Strategies

Identification Tips:

  • Look for $\frac{1}{n}$ or $\frac{b-a}{n}$ factor
  • Pattern: $f\left(a + \frac{r(b-a)}{n}\right)$ or similar
  • Limit as $n \to \infty$ of a sum
  • Right Riemann sum is most common

Common Pitfalls:

  • Forgetting the $\frac{1}{n}$ factor
  • Miscalculating $a$ and $b$ values
  • Wrong identification of $f(x)$
  • Integration errors after conversion

Advanced Applications Available

Includes special series, trigonometric sums, and JEE Advanced level problems with detailed solutions

📝 Quick Self-Test

Convert these limits to integrals and evaluate:

1. $\lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^n \frac{r^2}{n^2}$

2. $\lim_{n \to \infty} \frac{\pi}{n} \sum_{r=1}^n \sin\left(\frac{\pi r}{n}\right)$

3. $\lim_{n \to \infty} \frac{3}{n} \sum_{r=1}^n \sqrt{9 + \frac{9r}{n}}$

Ready to Master This Fundamental Concept?

Get complete access to advanced applications, video solutions, and practice problems

More Calculus Topics