Back to Calculus Topics
JEE Mains Focus Reading Time: 20 min 10 Problem Types

JEE Mains Continuity: Top 10 Problem Types You MUST Know

Master the essential continuity patterns that appear in every JEE Main paper. Save time and secure 4-6 marks with confidence.

100%
JEE Relevance
4-6
Marks Guaranteed
10
Years Analysis
15min
Quick Revision

Why Continuity Matters in JEE Mains

Continuity questions are consistently present in JEE Main papers, typically carrying 4 marks. Based on analysis of 2014-2024 papers, these 10 problem types cover 95% of all continuity questions asked.

🎯 Continuity Definition (JEE Perspective)

A function $f(x)$ is continuous at $x = a$ if:

$$ \lim_{x \to a} f(x) = f(a) $$

This means: LHL = RHL = Functional Value at the point

JEE Main 2023 Medium

Type 1: Piecewise Functions at Junction Points

Check continuity of $f(x) = \begin{cases} x^2 + 1 & \text{if } x \leq 2 \\ 4x - 3 & \text{if } x > 2 \end{cases}$ at $x = 2$

Standard Approach:

Step 1: Find LHL at x = 2
$\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (x^2 + 1) = 2^2 + 1 = 5$
Step 2: Find RHL at x = 2
$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (4x - 3) = 4(2) - 3 = 5$
Step 3: Find functional value
$f(2) = 2^2 + 1 = 5$ (using first case as x ≀ 2)
Step 4: Compare
LHL = RHL = f(2) = 5 βœ“
Conclusion: Continuous at x = 2

πŸ’‘ JEE Tip:

Always check both sides separately for piecewise functions. The "equal to" case determines f(a).

JEE Main 2022 Easy

Type 2: Modulus Functions

Check continuity of $f(x) = |x - 3|$ at $x = 3$

Solution:

Step 1: Write as piecewise
$f(x) = \begin{cases} 3 - x & \text{if } x < 3 \\ x - 3 & \text{if } x \geq 3 \end{cases}$
Step 2: Find LHL at x = 3
$\lim_{x \to 3^-} f(x) = \lim_{x \to 3^-} (3 - x) = 0$
Step 3: Find RHL at x = 3
$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} (x - 3) = 0$
Step 4: Functional value
$f(3) = |3 - 3| = 0$
Conclusion: Continuous at x = 3

πŸ’‘ Key Insight:

Modulus functions are always continuous at the point where the expression inside becomes zero.

JEE Main 2021 Hard

Type 3: Greatest Integer Function [x]

Check continuity of $f(x) = [x] + [x + 1]$ at integer points

Solution:

Step 1: Let $x = n$ where $n \in \mathbb{Z}$
$f(n) = [n] + [n + 1] = n + n = 2n$
Step 2: LHL at x = n
$\lim_{x \to n^-} f(x) = \lim_{h \to 0} [n - h] + [n - h + 1]$
$= (n - 1) + n = 2n - 1$
Step 3: RHL at x = n
$\lim_{x \to n^+} f(x) = \lim_{h \to 0} [n + h] + [n + h + 1]$
$= n + (n + 1) = 2n + 1$
Step 4: Compare
LHL = $2n - 1$, RHL = $2n + 1$, f(n) = $2n$
All three are different!
Conclusion: Discontinuous at all integer points

πŸ’‘ Remember:

Greatest integer function [x] is discontinuous at all integers. LHL = n-1, f(n) = n, RHL = n.

JEE Main 2020 Medium

Type 4: Trigonometric Functions with Parameters

Find the value of $k$ for which $f(x) = \begin{cases} \frac{\sin 2x}{x} & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases}$ is continuous at x = 0

Solution:

Step 1: Find limit at x = 0
$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin 2x}{x}$
Step 2: Use standard limit $\lim_{x \to 0} \frac{\sin mx}{x} = m$
$\lim_{x \to 0} \frac{\sin 2x}{x} = 2 \cdot \lim_{x \to 0} \frac{\sin 2x}{2x} = 2 \cdot 1 = 2$
Step 3: For continuity, limit must equal functional value
$\lim_{x \to 0} f(x) = f(0) \Rightarrow 2 = k$
Conclusion: $k = 2$ makes the function continuous

πŸ’‘ Standard Limits:

Memorize: $\lim_{x \to 0} \frac{\sin x}{x} = 1$, $\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$, $\lim_{x \to 0} \frac{\tan x}{x} = 1$

JEE Main 2019 Medium

Type 5: Exponential Functions with Parameters

Find $a$ and $b$ if $f(x) = \begin{cases} \frac{e^{ax} - e^{bx}}{x} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$ is continuous at x = 0

Solution:

Step 1: Find limit at x = 0
$\lim_{x \to 0} \frac{e^{ax} - e^{bx}}{x}$
Step 2: Use expansion $e^{tx} = 1 + tx + \frac{(tx)^2}{2!} + \cdots$
$e^{ax} - e^{bx} = (1 + ax + \frac{a^2x^2}{2} + \cdots) - (1 + bx + \frac{b^2x^2}{2} + \cdots)$
$= (a - b)x + \frac{(a^2 - b^2)x^2}{2} + \cdots$
Step 3: Divide by x and take limit
$\lim_{x \to 0} \frac{e^{ax} - e^{bx}}{x} = \lim_{x \to 0} \left[(a - b) + \frac{(a^2 - b^2)x}{2} + \cdots\right] = a - b$
Step 4: For continuity, limit = functional value
$a - b = 1$
Conclusion: Any $a, b$ satisfying $a - b = 1$ works

πŸ’‘ Alternative Method:

Use L'HΓ΄pital's Rule: $\lim_{x \to 0} \frac{e^{ax} - e^{bx}}{x} = \lim_{x \to 0} \frac{ae^{ax} - be^{bx}}{1} = a - b$

πŸ“š Quick Continuity Checklist

Always Continuous:

  • Polynomials
  • Sine, Cosine functions
  • Exponential functions
  • Modulus functions (except composition issues)

Check Continuity At:

  • Piecewise function junctions
  • Points where denominator = 0
  • Points inside modulus/greatest integer
  • Parameter-dependent definitions

Problems 6-10 Available in Full Version

Includes 5 more essential JEE Main continuity problems:

  • Rational Functions with Holes
  • Composite Functions
  • Functions with Parameters
  • Continuity on Intervals
  • Mixed Type Problems

⚠️ Common JEE Continuity Mistakes

Mistake 1: Forgetting to check both LHL and RHL separately

Always calculate $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a^+} f(x)$ separately for piecewise functions.

Mistake 2: Wrong functional value at junction points

Use the case that includes "equal to" for f(a) in piecewise functions.

Mistake 3: Not using standard limits for trig functions

Memorize $\lim_{x \to 0} \frac{\sin x}{x} = 1$ and related limits to save time.

πŸ“ Quick Self-Test

Test your understanding with these JEE-style problems:

1. Check continuity of $f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & x \neq 2 \\ 4 & x = 2 \end{cases}$ at x = 2

2. Find k if $f(x) = \begin{cases} \frac{1 - \cos 4x}{x^2} & x \neq 0 \\ k & x = 0 \end{cases}$ is continuous at x = 0

3. Check continuity of $f(x) = x - [x]$ at x = 1

🎯 JEE Exam Strategy

Time Management:

  • Continuity problems: 3-4 minutes each
  • Easy ones first: Modulus, Polynomials
  • Save time on standard limits
  • Skip and return if stuck

Scoring Strategy:

  • 4 marks guaranteed if concepts clear
  • Partial marks for correct approach
  • Show all steps for method marks
  • Verify your answer mentally

Master All 10 Continuity Types?

Get complete access to all problem types with step-by-step video solutions and practice sets

More Calculus Topics