JEE Problem Patterns: Mastering the Cross Product
Essential properties, collinearity conditions, and area calculations with solved JEE problems.
Why Cross Product Matters in JEE
The cross product (vector product) is one of the most important operations in vector algebra for JEE. It appears in 3-5 questions every year across these applications:
- Finding perpendicular vectors to given vectors
- Testing collinearity of points or vectors
- Calculating areas of triangles and parallelograms
- Physics applications in torque, angular momentum
- Coordinate geometry problems in 3D space
🎯 Quick Navigation
1. Cross Product Definition & Formula
Mathematical Definition
The cross product of two vectors $\vec{a}$ and $\vec{b}$ is a vector $\vec{c}$ that is perpendicular to both $\vec{a}$ and $\vec{b}$, with magnitude equal to the area of the parallelogram formed by $\vec{a}$ and $\vec{b}$.
Formula in Component Form
If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, then:
Which expands to:
Geometric Interpretation
Magnitude:
Where $\theta$ is the angle between $\vec{a}$ and $\vec{b}$
Direction:
Given by the right-hand rule: Point fingers in direction of $\vec{a}$, curl towards $\vec{b}$, thumb gives direction of $\vec{a} \times \vec{b}$.
2. Essential Properties of Cross Product
Anti-commutative Property
Order matters! Changing order reverses the direction.
Distributive Property
Cross product distributes over vector addition.
Scalar Multiplication
Scalars can be factored out.
Parallel Vectors
Cross product is zero if vectors are parallel.
⚠️ Important Notes
- Cross product is not associative: $\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$
- Cross product of a vector with itself is zero: $\vec{a} \times \vec{a} = \vec{0}$
- Cross product is defined only in 3D space
3. Condition for Collinearity
Fundamental Collinearity Condition
Three points A, B, C are collinear if and only if the vectors $\vec{AB}$ and $\vec{AC}$ are parallel, which means:
Or equivalently, $\vec{AB} = k\vec{AC}$ for some scalar $k$.
Problem: Checking Collinearity
Determine if points A(1, 2, 3), B(4, 5, 6), and C(7, 8, 9) are collinear.
Solution:
Step 1: Find vectors $\vec{AB}$ and $\vec{AC}$
$\vec{AB} = (4-1, 5-2, 6-3) = (3, 3, 3)$
$\vec{AC} = (7-1, 8-2, 9-3) = (6, 6, 6)$
Step 2: Check if $\vec{AB} \times \vec{AC} = \vec{0}$
$\vec{AB} \times \vec{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 3 & 3 \\ 6 & 6 & 6 \\ \end{vmatrix}$
$= \hat{i}(3\cdot6 - 3\cdot6) - \hat{j}(3\cdot6 - 3\cdot6) + \hat{k}(3\cdot6 - 3\cdot6)$
$= \hat{i}(0) - \hat{j}(0) + \hat{k}(0) = \vec{0}$
Step 3: Since $\vec{AB} \times \vec{AC} = \vec{0}$, the points are collinear.
4. Area Calculations Using Cross Product
Area of Parallelogram
Where $\vec{a}$ and $\vec{b}$ are adjacent sides of the parallelogram.
Area of Triangle
Where $\vec{a}$ and $\vec{b}$ are two sides of the triangle.
Problem: Area of Triangle
Find the area of triangle with vertices A(1, 1, 1), B(1, 2, 3), and C(2, 3, 1).
Solution:
Step 1: Find vectors $\vec{AB}$ and $\vec{AC}$
$\vec{AB} = (1-1, 2-1, 3-1) = (0, 1, 2)$
$\vec{AC} = (2-1, 3-1, 1-1) = (1, 2, 0)$
Step 2: Calculate $\vec{AB} \times \vec{AC}$
$\vec{AB} \times \vec{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & 2 \\ 1 & 2 & 0 \\ \end{vmatrix}$
$= \hat{i}(1\cdot0 - 2\cdot2) - \hat{j}(0\cdot0 - 2\cdot1) + \hat{k}(0\cdot2 - 1\cdot1)$
$= \hat{i}(-4) - \hat{j}(-2) + \hat{k}(-1) = (-4, 2, -1)$
Step 3: Find magnitude of cross product
$|\vec{AB} \times \vec{AC}| = \sqrt{(-4)^2 + 2^2 + (-1)^2} = \sqrt{16 + 4 + 1} = \sqrt{21}$
Step 4: Calculate area of triangle
$\text{Area} = \frac{1}{2} |\vec{AB} \times \vec{AC}| = \frac{1}{2} \sqrt{21}$
5. JEE-Level Practice Problems
Problem 1: Vector Triple Product
If $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$, then which of the following is true?
Solution Approach:
Step 1: Use vector triple product identity
$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$
$(\vec{a} \times \vec{b}) \times \vec{c} = - \vec{c} \times (\vec{a} \times \vec{b}) = -[(\vec{c} \cdot \vec{b})\vec{a} - (\vec{c} \cdot \vec{a})\vec{b}]$
Step 2: Set them equal and simplify
This leads to conditions on the relationships between vectors
Step 3: The equality holds if $\vec{a}$ and $\vec{c}$ are parallel
Problem 2: Finding Perpendicular Vector
Find a unit vector perpendicular to both $\vec{a} = \hat{i} + 2\hat{j} - \hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} + 2\hat{k}$.
Solution:
Step 1: Calculate $\vec{a} \times \vec{b}$
$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1 \\ 2 & 1 & 2 \\ \end{vmatrix}$
$= \hat{i}(4 - (-1)) - \hat{j}(2 - (-2)) + \hat{k}(1 - 4)$
$= 5\hat{i} - 4\hat{j} - 3\hat{k}$
Step 2: Find magnitude
$|\vec{a} \times \vec{b}| = \sqrt{5^2 + (-4)^2 + (-3)^2} = \sqrt{25 + 16 + 9} = \sqrt{50} = 5\sqrt{2}$
Step 3: Unit vector = $\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
$\hat{n} = \frac{5\hat{i} - 4\hat{j} - 3\hat{k}}{5\sqrt{2}} = \frac{1}{\sqrt{2}}\left(\hat{i} - \frac{4}{5}\hat{j} - \frac{3}{5}\hat{k}\right)$
🚀 Quick Revision Formulas
Cross Product Formulas
- $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
- $\vec{a} \times \vec{a} = \vec{0}$
- $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$
- $|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin\theta$
Applications
- Collinearity: $\vec{a} \times \vec{b} = \vec{0}$
- Area of parallelogram: $|\vec{a} \times \vec{b}|$
- Area of triangle: $\frac{1}{2}|\vec{a} \times \vec{b}|$
- Unit perpendicular: $\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
📝 Practice Exercise
Test your understanding with these problems:
1. Find $\vec{a} \times \vec{b}$ if $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 3\hat{j} - 2\hat{k}$
2. Check if points P(1,0,1), Q(0,1,1), R(1,1,0) are collinear
3. Find area of triangle with vertices (1,0,0), (0,1,0), (0,0,1)
4. Find a vector of magnitude 3 perpendicular to both $\hat{i} + \hat{j}$ and $\hat{i} + \hat{k}$
Answers: 1. $-\hat{i} + 5\hat{j} + 7\hat{k}$, 2. Not collinear, 3. $\frac{\sqrt{3}}{2}$, 4. $\pm\sqrt{3}(\hat{i} - \hat{j} - \hat{k})$
Mastered Cross Product?
Continue your vector algebra journey with these topics