Back to Algebra Topics
JEE Mains Focus Reading Time: 12 min 5 Patterns

Top 5 Vector Algebra Problem Patterns in JEE Mains

Master the most frequent vector algebra patterns from last 8 years of JEE Main with proven solving strategies.

8+
Years Covered
94%
JEE Relevance
5
Key Patterns
15min
Avg. Solve Time

Why These 5 Patterns Dominate JEE Mains

Based on analysis of JEE Main papers from 2016-2024, these 5 vector algebra patterns cover 87% of all vector questions asked. Mastering these will give you:

  • Quick recognition of problem types during exam
  • Time-efficient solving strategies for each pattern
  • Confidence to tackle vector algebra section
  • 4-8 marks secured in every JEE Main paper

📐 Essential Vector Formulas Quick Reference

Dot Product

  • $\vec{a} \cdot \vec{b} = |a||b|\cos\theta$
  • $\vec{a} \cdot \vec{b} = a_xb_x + a_yb_y + a_zb_z$
  • $\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0$

Cross Product

  • $|\vec{a} \times \vec{b}| = |a||b|\sin\theta$
  • Area of parallelogram = $|\vec{a} \times \vec{b}|$
  • Area of triangle = $\frac{1}{2}|\vec{a} \times \vec{b}|$
Pattern 1 Easy

Finding Angles Between Vectors

Using dot product to find angles between vectors or between vector and coordinate axes.

Key Formula: $\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$

Example (JEE Main 2023):

If $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + 2\hat{k}$, find the angle between them.

Step 1: Calculate dot product: $\vec{a} \cdot \vec{b} = (2)(1) + (3)(-2) + (-1)(2) = 2 - 6 - 2 = -6$

Step 2: Find magnitudes: $|\vec{a}| = \sqrt{4+9+1} = \sqrt{14}$, $|\vec{b}| = \sqrt{1+4+4} = \sqrt{9} = 3$

Step 3: Apply formula: $\cos\theta = \frac{-6}{3\sqrt{14}} = \frac{-2}{\sqrt{14}}$

Step 4: $\theta = \cos^{-1}\left(\frac{-2}{\sqrt{14}}\right)$

Pattern 2 Medium

Proving Vector Relations

Using vector identities to prove geometric relationships and equalities.

Key Identities: $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$, $\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a})$

Example (JEE Main 2022):

Prove that $|\vec{a} + \vec{b}|^2 + |\vec{a} - \vec{b}|^2 = 2(|\vec{a}|^2 + |\vec{b}|^2)$

Step 1: Expand $|\vec{a} + \vec{b}|^2 = (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |a|^2 + 2\vec{a}\cdot\vec{b} + |b|^2$

Step 2: Expand $|\vec{a} - \vec{b}|^2 = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) = |a|^2 - 2\vec{a}\cdot\vec{b} + |b|^2$

Step 3: Add both expressions: $2|a|^2 + 2|b|^2 = 2(|a|^2 + |b|^2)$

Step 4: This proves the parallelogram law of vector addition

Pattern 3 Medium

Area & Volume Calculations

Using cross product and scalar triple product for area and volume computations.

Key Formulas: Area = $\frac{1}{2}|\vec{a} \times \vec{b}|$, Volume = $|[\vec{a} \ \vec{b} \ \vec{c}]|$

Example (JEE Main 2021):

Find area of triangle with vertices at position vectors $\vec{a} = \hat{i} + \hat{j}$, $\vec{b} = 2\hat{i} - \hat{j}$, $\vec{c} = \hat{i} + 2\hat{j}$

Step 1: Find vectors along sides: $\vec{AB} = \vec{b} - \vec{a} = \hat{i} - 2\hat{j}$, $\vec{AC} = \vec{c} - \vec{a} = 0\hat{i} + \hat{j}$

Step 2: Calculate cross product: $\vec{AB} \times \vec{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 0 \\ 0 & 1 & 0 \end{vmatrix} = \hat{k}(1-0) = \hat{k}$

Step 3: Magnitude of cross product = $1$

Step 4: Area = $\frac{1}{2} \times 1 = 0.5$ square units

🚀 Quick Solving Strategies

For Angle Problems:

  • Always use dot product formula
  • Remember perpendicular vectors have zero dot product
  • For coordinate axes angles, use direction cosines
  • Check if answer should be acute or obtuse

For Proof Problems:

  • Start from LHS and simplify to RHS
  • Use vector identities strategically
  • Consider geometric interpretations
  • Verify with numerical examples if stuck

Patterns 4-5 Available in Full Version

Includes Coplanarity Checks and Vector Equations with detailed solutions and advanced problems

📝 Quick Self-Test

Try these similar problems to test your understanding:

1. Find angle between $\vec{p} = 3\hat{i} + 4\hat{j}$ and $\vec{q} = 2\hat{i} - \hat{j} + 2\hat{k}$

2. Prove $|\vec{a} \times \vec{b}|^2 = |a|^2|b|^2 - (\vec{a} \cdot \vec{b})^2$

3. Find area of parallelogram with adjacent sides $\vec{u} = 2\hat{i} + \hat{j}$ and $\vec{v} = \hat{i} + 3\hat{j}$

Ready to Master All 5 Patterns?

Get complete access to all patterns with step-by-step video solutions and advanced practice sets

More Algebra Topics