Back to Algebra Topics
JEE Algebra Focus Reading Time: 12 min 3 Key Formulas

Summation of Special Series: ∑n, ∑n², ∑n³ - Complete Guide

Master the fundamental summation formulas with geometric proofs, derivations, and JEE-level applications.

3
Key Formulas
100%
JEE Relevance
5+
Proof Methods
15min
Practice Time

Why These Summation Formulas Are Essential

The summation formulas for ∑n, ∑n², and ∑n³ form the foundation of series and sequences in JEE Mathematics. These appear in:

  • Direct formula application problems (JEE Main)
  • Proof-based questions (JEE Advanced)
  • Method of differences applications
  • Integration approximation problems
Formula 1 Essential

Sum of First n Natural Numbers

$$S_1 = \sum_{k=1}^n k = 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$$

📐 Geometric Proof (Gauss Method):

Step 1: Write the sum forward and backward:

$S = 1 + 2 + 3 + \cdots + (n-1) + n$

$S = n + (n-1) + (n-2) + \cdots + 2 + 1$

Step 2: Add both equations:

$2S = (n+1) + (n+1) + (n+1) + \cdots + (n+1)$

Step 3: There are n terms of (n+1):

$2S = n(n+1)$

Step 4: Final formula:

$S = \frac{n(n+1)}{2}$

🎯 JEE Application Example:

Problem: Find the sum of first 100 natural numbers.

Solution: Using the formula:

$\sum_{k=1}^{100} k = \frac{100 \times 101}{2} = 50 \times 101 = 5050$

Formula 2 Important

Sum of Squares of First n Natural Numbers

$$S_2 = \sum_{k=1}^n k^2 = 1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

📐 Proof Using Telescoping Series:

Step 1: Use the identity: $(k+1)^3 - k^3 = 3k^2 + 3k + 1$

Step 2: Write for k = 1 to n:

$2^3 - 1^3 = 3\cdot1^2 + 3\cdot1 + 1$

$3^3 - 2^3 = 3\cdot2^2 + 3\cdot2 + 1$

$\vdots$

$(n+1)^3 - n^3 = 3\cdot n^2 + 3\cdot n + 1$

Step 3: Add all equations (LHS telescopes):

$(n+1)^3 - 1 = 3\sum k^2 + 3\sum k + n$

Step 4: Substitute $\sum k = \frac{n(n+1)}{2}$:

$n^3 + 3n^2 + 3n = 3\sum k^2 + \frac{3n(n+1)}{2} + n$

Step 5: Solve for $\sum k^2$:

$\sum k^2 = \frac{n(n+1)(2n+1)}{6}$

🎯 JEE Application Example:

Problem: Find $1^2 + 2^2 + 3^2 + \cdots + 20^2$

Solution: Using the formula:

$\sum_{k=1}^{20} k^2 = \frac{20 \times 21 \times 41}{6} = \frac{17220}{6} = 2870$

Formula 3 Advanced

Sum of Cubes of First n Natural Numbers

$$S_3 = \sum_{k=1}^n k^3 = 1^3 + 2^3 + 3^3 + \cdots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$$

📐 Proof Using Mathematical Induction:

Step 1: Base case (n=1):

LHS = $1^3 = 1$, RHS = $\left[\frac{1\times2}{2}\right]^2 = 1$ ✓

Step 2: Assume true for n = m:

$1^3 + 2^3 + \cdots + m^3 = \left[\frac{m(m+1)}{2}\right]^2$

Step 3: Prove for n = m+1:

$1^3 + 2^3 + \cdots + m^3 + (m+1)^3 = \left[\frac{m(m+1)}{2}\right]^2 + (m+1)^3$

$= (m+1)^2\left[\frac{m^2}{4} + (m+1)\right]$

$= (m+1)^2\left[\frac{m^2 + 4m + 4}{4}\right]$

$= \left[\frac{(m+1)(m+2)}{2}\right]^2$ ✓

🎯 JEE Application Example:

Problem: Find $1^3 + 2^3 + 3^3 + \cdots + 10^3$

Solution: Using the formula:

$\sum_{k=1}^{10} k^3 = \left[\frac{10 \times 11}{2}\right]^2 = [55]^2 = 3025$

Note: This equals $(1+2+3+\cdots+10)^2$

🚀 Problem-Solving Strategies

Memory Techniques:

  • ∑n³ = (∑n)² - Beautiful pattern!
  • ∑n² denominator is always 6
  • All formulas have n(n+1) factor
  • For ∑n²: multiply by (2n+1)

JEE Exam Tips:

  • Verify formulas for n=1,2,3
  • Use method of differences for variations
  • Remember special cases for quick answers
  • Practice mixed series problems

Advanced Applications Available

Includes method of differences, summation of special series, and JEE Advanced level problems

📝 Quick Self-Test

Try these JEE-level problems to test your understanding:

1. Find $\sum_{k=1}^{15} (2k-1)$ [Sum of first 15 odd numbers]

2. Calculate $1^2 + 3^2 + 5^2 + \cdots + 19^2$

3. Prove that $1^3 + 2^3 + \cdots + n^3 = (1 + 2 + \cdots + n)^2$

Ready to Master Series & Sequences?

Get complete access to advanced summation techniques and JEE practice problems

More Algebra Topics