Back to Algebra Topics
JEE Advanced Focus Reading Time: 15 min Advanced Concept

Cayley-Hamilton Theorem: The Game-Changer for JEE Advanced

Master this powerful theorem to solve complex matrix problems in seconds instead of minutes.

5x
Faster Solutions
2015-24
Years Featured
3
Key Applications
6-8
Marks Advantage

Why Cayley-Hamilton is a JEE Advanced Secret Weapon

The Cayley-Hamilton Theorem transforms complex matrix computations into simple polynomial evaluations. In JEE Advanced, where every second counts, this theorem can save you 3-5 minutes on matrix problems that would otherwise require tedious calculations.

🎯 JEE Advanced Significance

  • Appears in 1-2 problems every year in JEE Advanced
  • Solves problems that are nearly impossible with conventional methods
  • Particularly useful for finding high powers of matrices and matrix inverses
  • Reduces computation time by 70-80%
Core Theorem Fundamental

The Cayley-Hamilton Theorem

Every square matrix satisfies its own characteristic equation

Mathematical Statement

If $A$ is an $n \times n$ matrix and $p(\lambda) = \det(A - \lambda I)$ is its characteristic polynomial, then:

$$ p(A) = 0 $$

Where $p(A)$ means substitute the matrix $A$ into the characteristic polynomial instead of the variable $\lambda$.

Quick Example

For a $2 \times 2$ matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$:

Characteristic equation: $\lambda^2 - (a+d)\lambda + (ad - bc) = 0$

Cayley-Hamilton says: $A^2 - (a+d)A + (ad - bc)I = 0$

JEE Advanced 2023 High Yield

Application 1: Finding High Powers of Matrices

Problem Example

If $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, find $A^5$ using Cayley-Hamilton Theorem.

Step-by-Step Solution

Step 1: Find characteristic equation

$|A - \lambda I| = \begin{vmatrix} 1-\lambda & 2 \\ 2 & 1-\lambda \end{vmatrix} = (1-\lambda)^2 - 4 = \lambda^2 - 2\lambda - 3 = 0$

Step 2: Apply Cayley-Hamilton: $A^2 - 2A - 3I = 0$

So $A^2 = 2A + 3I$

Step 3: Find higher powers recursively:

$A^3 = A \cdot A^2 = A(2A + 3I) = 2A^2 + 3A = 2(2A + 3I) + 3A = 7A + 6I$

$A^4 = A \cdot A^3 = A(7A + 6I) = 7A^2 + 6A = 7(2A + 3I) + 6A = 20A + 21I$

$A^5 = A \cdot A^4 = A(20A + 21I) = 20A^2 + 21A = 20(2A + 3I) + 21A = 61A + 60I$

Step 4: Substitute $A$ and $I$:

$A^5 = 61\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} + 60\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 121 & 122 \\ 122 & 121 \end{bmatrix}$

💡 Time-Saving Insight

For $A^n$, express it as $A^n = \alpha A + \beta I$ (for $2\times2$ matrices), then use the characteristic equation to find $\alpha$ and $\beta$.

JEE Advanced 2021 Medium Yield

Application 2: Finding Matrix Inverse

Problem Example

Find $A^{-1}$ for $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ using Cayley-Hamilton Theorem.

Step-by-Step Solution

Step 1: Characteristic equation:

$|A - \lambda I| = \begin{vmatrix} 2-\lambda & 1 \\ 1 & 2-\lambda \end{vmatrix} = (2-\lambda)^2 - 1 = \lambda^2 - 4\lambda + 3 = 0$

Step 2: Cayley-Hamilton: $A^2 - 4A + 3I = 0$

Step 3: Rearrange for inverse:

$A^2 - 4A + 3I = 0 \Rightarrow A^2 - 4A = -3I$

$A(A - 4I) = -3I \Rightarrow A \cdot \frac{4I - A}{3} = I$

Step 4: Therefore: $A^{-1} = \frac{4I - A}{3}$

Step 5: Compute:

$A^{-1} = \frac{1}{3}\left(4\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}\right) = \frac{1}{3}\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$

💡 General Formula

For any $2\times2$ matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with characteristic equation $\lambda^2 - S\lambda + D = 0$ where $S = a+d$, $D = ad-bc$:

$$ A^{-1} = \frac{SI - A}{D} $$
JEE Advanced 2019 High Yield

Application 3: Solving Complex Matrix Equations

Problem Example

If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, find $A^4 - 5A^3 + 7A^2 - 2A + I$

Step-by-Step Solution

Step 1: Find characteristic equation:

$|A - \lambda I| = \begin{vmatrix} 3-\lambda & 1 \\ -1 & 2-\lambda \end{vmatrix} = (3-\lambda)(2-\lambda) + 1 = \lambda^2 - 5\lambda + 7 = 0$

Step 2: Cayley-Hamilton: $A^2 - 5A + 7I = 0$

Step 3: Notice the given expression:

$A^4 - 5A^3 + 7A^2 - 2A + I = (A^2 - 5A + 7I)(A^2) - 2A + I$

Step 4: But $A^2 - 5A + 7I = 0$, so:

$= 0 \cdot A^2 - 2A + I = -2A + I$

Step 5: Compute:

$-2\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -5 & -2 \\ 2 & -3 \end{bmatrix}$

💡 Powerful Strategy

For any polynomial expression in $A$, use polynomial division to divide by the characteristic polynomial. The remainder gives you the simplified expression.

📋 Cayley-Hamilton Quick Reference

For 2×2 Matrices

$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

Characteristic equation: $\lambda^2 - (a+d)\lambda + (ad-bc) = 0$

Cayley-Hamilton: $A^2 - (a+d)A + (ad-bc)I = 0$

Inverse: $A^{-1} = \frac{(a+d)I - A}{ad-bc}$

For 3×3 Matrices

$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$

Characteristic equation: $\lambda^3 - S_1\lambda^2 + S_2\lambda - S_3 = 0$

Where $S_1 = \text{trace}(A)$, $S_3 = \det(A)$

Cayley-Hamilton: $A^3 - S_1A^2 + S_2A - S_3I = 0$

⚠️ Common Mistakes to Avoid

Mistake 1: Wrong Characteristic Equation

Double-check your determinant calculation. For $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, it's $\lambda^2 - (a+d)\lambda + (ad-bc) = 0$, not $\lambda^2 - (a+d)\lambda - (ad-bc) = 0$.

Mistake 2: Scalar vs Matrix Operations

Remember that $A^2$ means matrix multiplication $A \times A$, not element-wise squaring. And $0$ in the theorem means the zero matrix, not scalar zero.

Mistake 3: Forgetting the Identity Matrix

In the characteristic polynomial $p(\lambda) = \lambda^2 + \alpha\lambda + \beta$, when substituting $A$, the constant term $\beta$ becomes $\beta I$, not just $\beta$.

🎯 JEE Advanced Practice Problems

1. If $A = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$, find $A^6$ using Cayley-Hamilton Theorem.

[JEE Advanced 2018]

2. Let $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$. Verify that A satisfies its characteristic equation and hence find $A^{-1}$.

[JEE Advanced 2016]

3. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $I$ is the identity matrix, find $A^5 - 5A^4 + 6A^3 + 2A^2 - 3A + I$.

[JEE Advanced 2020]

Time yourself: Try to solve each problem in under 4 minutes using Cayley-Hamilton Theorem.

🚀 Exam Strategy for Cayley-Hamilton

When to Use It

  • Finding $A^n$ for $n > 3$
  • Computing matrix polynomials
  • Finding inverse of $2\times2$ and $3\times3$ matrices
  • Solving matrix equations
  • Proving matrix identities

Speed Tips

  • Memorize the $2\times2$ characteristic formula
  • Use polynomial division for complex expressions
  • For $A^n$, find pattern in coefficients
  • Practice mental calculation of determinants

Mastered Cayley-Hamilton?

Continue your JEE Advanced matrix algebra journey with these topics