Back to Mathematics Topics
JEE Main & Advanced Reading Time: 12 min 5 Key Applications

De Moivre's Theorem: The Game Changer for Complex Numbers

Master the theorem that simplifies complex number operations, powers, roots, and trigonometric identities for JEE success.

3-5
Questions per year
100%
JEE Relevance
5
Key Applications
15min
Mastery Time

Why De Moivre's Theorem is a JEE Game Changer

De Moivre's Theorem connects complex numbers with trigonometry, creating powerful shortcuts for JEE problems. Based on analysis of past papers, this theorem appears in 3-5 questions every year across both JEE Main and Advanced.

  • Solves complex powers in 2 steps instead of 10+
  • Finds all roots of complex numbers systematically
  • Derives trigonometric identities without memorization
  • Saves 5-7 minutes per complex numbers problem
Core Theorem Essential

De Moivre's Theorem Statement

For any real number $n$ and integer $n$,

$$(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$$

For a complex number $z = r(\cos\theta + i\sin\theta)$:

$$z^n = r^n[\cos(n\theta) + i\sin(n\theta)]$$

Key Insight:

When raising a complex number to power $n$, the modulus gets raised to power $n$ and the argument gets multiplied by $n$.

This converts complicated binomial expansions into simple trigonometric calculations.

Application 1 Medium

Finding Powers of Complex Numbers

Simplify $(1 + i)^{10}$ using De Moivre's Theorem

Step-by-Step Solution:

Step 1: Convert to polar form: $1 + i = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$

Step 2: Apply De Moivre's Theorem:

$(1 + i)^{10} = (\sqrt{2})^{10}\left[\cos\left(10\cdot\frac{\pi}{4}\right) + i\sin\left(10\cdot\frac{\pi}{4}\right)\right]$

Step 3: Simplify: $= 32\left[\cos\left(\frac{5\pi}{2}\right) + i\sin\left(\frac{5\pi}{2}\right)\right]$

Step 4: Reduce angles: $\frac{5\pi}{2} = 2\pi + \frac{\pi}{2}$

Step 5: Final answer: $= 32(0 + i\cdot 1) = 32i$

Time Saved: Direct method requires binomial expansion of $(1+i)^{10}$, which has 11 terms!

Application 2 Hard

Finding Roots of Complex Numbers

Find all cube roots of $8$ using De Moivre's Theorem

Step-by-Step Solution:

Step 1: Write in polar form: $8 = 8(\cos 0 + i\sin 0)$

Step 2: Apply De Moivre's for roots:

$z_k = \sqrt[3]{8}\left[\cos\left(\frac{0 + 2\pi k}{3}\right) + i\sin\left(\frac{0 + 2\pi k}{3}\right)\right]$

Step 3: For $k = 0,1,2$:

• $k=0$: $2(\cos 0 + i\sin 0) = 2$

• $k=1$: $2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = -1 + i\sqrt{3}$

• $k=2$: $2\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right) = -1 - i\sqrt{3}$

Application 3 Medium

Deriving Trigonometric Identities

Express $\cos 3\theta$ in terms of $\cos\theta$ using De Moivre's Theorem

Step-by-Step Solution:

Step 1: By De Moivre: $(\cos\theta + i\sin\theta)^3 = \cos 3\theta + i\sin 3\theta$

Step 2: Expand LHS using binomial theorem:

$= \cos^3\theta + 3i\cos^2\theta\sin\theta - 3\cos\theta\sin^2\theta - i\sin^3\theta$

Step 3: Equate real parts:

$\cos 3\theta = \cos^3\theta - 3\cos\theta\sin^2\theta$

Step 4: Use $\sin^2\theta = 1 - \cos^2\theta$:

$\cos 3\theta = 4\cos^3\theta - 3\cos\theta$

🚀 JEE Problem-Solving Strategies

When to Use De Moivre's Theorem:

  • Complex numbers raised to high powers
  • Finding all roots of complex numbers
  • Deriving trigonometric identities
  • Solving equations involving complex numbers

Common Mistakes to Avoid:

  • Forgetting to convert to polar form first
  • Missing roots when finding nth roots
  • Incorrect angle reduction
  • Not considering all values of k (0 to n-1)

Applications 4-5 Available in Full Version

Includes solving complex equations and advanced trigonometric applications with JEE-level problems

📝 Quick Self-Test

Try these JEE-level problems to test your understanding:

1. Simplify $(1 - i)^8$ using De Moivre's Theorem

2. Find all fourth roots of $-16$

3. Express $\sin 4\theta$ in terms of $\sin\theta$ and $\cos\theta$

📋 De Moivre's Theorem Formula Sheet

Main Formulas:

  • $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$
  • $z^n = r^n(\cos n\theta + i\sin n\theta)$
  • $z^{1/n} = r^{1/n}\left[\cos\left(\frac{\theta+2\pi k}{n}\right) + i\sin\left(\frac{\theta+2\pi k}{n}\right)\right]$

Key Results:

  • $\cos n\theta = \Re[(\cos\theta + i\sin\theta)^n]$
  • $\sin n\theta = \Im[(\cos\theta + i\sin\theta)^n]$
  • $k = 0, 1, 2, ..., n-1$ for nth roots

Ready to Master De Moivre's Theorem?

Get complete access to all applications with step-by-step video solutions and practice problems

More Complex Numbers