Back to Algebra Topics
JEE Advanced Reading Time: 15 min Part 8 of Series

Binomial Theorem #8: The Binomial Theorem for Any Index

A Taste of JEE Advanced - Extending binomial expansion to rational indices and infinite series.

Infinite Series
n ∈ Q
Rational Index
|x| < 1
Validity Condition
JEE Adv
Advanced Level

Beyond Positive Integers: A Revolutionary Extension

Until now, we've worked with the binomial theorem for positive integer indices. But what if we want to expand $(1 + x)^{1/2}$ or $(1 + x)^{-3}$? This is where the general binomial theorem comes in - one of the most powerful extensions in algebra.

🎯 Why This Matters for JEE Advanced

  • Appears in approximation problems and limit calculations
  • Essential for understanding infinite series and power series
  • Used in calculus for Taylor series expansions
  • Tested in comprehension-type questions in JEE Advanced

1. The General Binomial Theorem

Binomial Theorem for Any Rational Index

$$ (1 + x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \cdots $$

Where:

  • $n$ is any rational number (n ∈ Q)
  • The series is infinite
  • General term: $T_{r+1} = \frac{n(n-1)\cdots(n-r+1)}{r!}x^r$
  • Valid when |x| < 1

Special Cases:

  • If $n$ is positive integer: finite series
  • If $n$ is negative integer: infinite series
  • If $n$ is fraction: infinite series
  • If $n = -1$: geometric series

💡 Understanding the General Term

The general term in the expansion of $(1 + x)^n$ for any rational $n$ is:

$$ T_{r+1} = \binom{n}{r} x^r $$

Where the binomial coefficient is defined as:

$$ \binom{n}{r} = \frac{n(n-1)(n-2)\cdots(n-r+1)}{r!} $$

Note: This definition works for any real $n$, not just positive integers!

2. The Crucial Validity Condition: |x| < 1

⚠️ Important Restriction

The infinite binomial expansion converges (gives a finite sum) only when:

$$ |x| < 1 $$

If $|x| \geq 1$, the series diverges (the sum becomes infinite or undefined).

🔍 Why |x| < 1 is Necessary

Mathematical Reason:

The terms of the series must eventually decrease in magnitude for the sum to converge to a finite value.

When $|x| < 1$, higher powers of $x$ become smaller, making the series convergent.

Visual Understanding:

Consider $(1 + x)^{-1} = 1 - x + x^2 - x^3 + x^4 - \cdots$

If $x = 0.5$: Terms: 1, -0.5, 0.25, -0.125, 0.0625, ... (converges to 2/3)

If $x = 2$: Terms: 1, -2, 4, -8, 16, ... (diverges to infinity)

🎯 JEE Advanced Insight

For $(a + x)^n$ where $a \neq 1$, rewrite as:

$$ (a + x)^n = a^n \left(1 + \frac{x}{a}\right)^n $$

Then the validity condition becomes $\left|\frac{x}{a}\right| < 1$ or $|x| < |a|$.

3. The Concept of Infinite Series

∞ Understanding Infinite Series

An infinite series is a sum of infinitely many terms:

$$ S = a_1 + a_2 + a_3 + a_4 + \cdots $$

Convergent Series

The sum approaches a finite limit.

Example: $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = 2$

Divergent Series

The sum grows without bound or oscillates.

Example: $1 + 2 + 3 + 4 + \cdots = \infty$

📚 Example: Expansion of (1 + x)^{1/2}

Let's expand $\sqrt{1 + x} = (1 + x)^{1/2}$ using the general binomial theorem:

Step 1: Apply the formula with n = 1/2

$(1 + x)^{1/2} = 1 + \frac{1}{2}x + \frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}x^2 + \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)}{3!}x^3 + \cdots$

Step 2: Simplify coefficients

$= 1 + \frac{1}{2}x + \frac{-\frac{1}{4}}{2}x^2 + \frac{\frac{3}{8}}{6}x^3 + \cdots$

$= 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \cdots$

Step 3: Validity condition

This expansion is valid when $|x| < 1$.

4. Important Standard Expansions

(1 + x)^{-1}

$$ (1 + x)^{-1} = 1 - x + x^2 - x^3 + x^4 - x^5 + \cdots $$

Valid for $|x| < 1$

This is the geometric series with ratio $-x$

(1 + x)^{-2}

$$ (1 + x)^{-2} = 1 - 2x + 3x^2 - 4x^3 + 5x^4 - \cdots $$

Valid for $|x| < 1$

(1 - x)^{-1}

$$ (1 - x)^{-1} = 1 + x + x^2 + x^3 + x^4 + x^5 + \cdots $$

Valid for $|x| < 1$

(1 + x)^{1/2}

$$ (1 + x)^{1/2} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \cdots $$

Valid for $|x| < 1$

5. Applications & Problem Solving

🎯 JEE Advanced Type Problem

Problem: Find the coefficient of $x^3$ in the expansion of $\frac{1}{\sqrt{1 - 2x}}$ up to $x^3$.

Step 1: Rewrite the expression

$\frac{1}{\sqrt{1 - 2x}} = (1 - 2x)^{-1/2}$

Step 2: Apply binomial theorem with n = -1/2

$(1 - 2x)^{-1/2} = 1 + (-\frac{1}{2})(-2x) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(-2x)^2 + \frac{(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})}{3!}(-2x)^3 + \cdots$

Step 3: Simplify each term

$= 1 + x + \frac{3}{8}(4x^2) + \frac{-15}{48}(-8x^3) + \cdots$

$= 1 + x + \frac{3}{2}x^2 + \frac{5}{2}x^3 + \cdots$

Step 4: Check validity condition

$| -2x | < 1 \Rightarrow |x| < \frac{1}{2}$

Final Answer

Coefficient of $x^3$ is $\frac{5}{2}$

💡 Approximation Technique

The binomial expansion is extremely useful for approximations when $x$ is small:

$$ (1 + x)^n \approx 1 + nx \quad \text{(for small } x \text{)} $$

Example: $\sqrt{1.02} = (1 + 0.02)^{1/2} \approx 1 + \frac{1}{2}(0.02) = 1.01$

The actual value is approximately 1.00995, so our approximation is quite good!

6. Common Mistakes to Avoid

❌ Forgetting the Validity Condition

Using the expansion when $|x| \geq 1$ leads to incorrect results.

Wrong: Applying $(1 + 2)^{-1} = 1 - 2 + 4 - 8 + \cdots$ (diverges!)

Correct: $(1 + 2)^{-1} = \frac{1}{3}$ (evaluate directly)

❌ Misapplying to (a + b)^n

For $(a + b)^n$ where $a \neq 1$, you must factor:

$$ (a + b)^n = a^n\left(1 + \frac{b}{a}\right)^n $$

Then the validity condition is $\left|\frac{b}{a}\right| < 1$.

❌ Confusing Finite and Infinite Cases

Remember: The expansion is finite only when $n$ is a positive integer.

For all other rational $n$, the expansion is infinite.

📋 Quick Revision Checklist

Key Formulas:

  • $(1 + x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \cdots$
  • $T_{r+1} = \frac{n(n-1)\cdots(n-r+1)}{r!}x^r$
  • Valid for $|x| < 1$ when $n \notin \mathbb{Z}^+$
  • For $(a + x)^n = a^n(1 + \frac{x}{a})^n$

Must Remember:

  • $(1 + x)^{-1} = 1 - x + x^2 - x^3 + \cdots$
  • $(1 - x)^{-1} = 1 + x + x^2 + x^3 + \cdots$
  • $(1 + x)^{-2} = 1 - 2x + 3x^2 - 4x^3 + \cdots$
  • $(1 + x)^{1/2} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \cdots$

📝 Practice Problems

Test your understanding with these JEE-level problems:

1. Find the first four terms in the expansion of $(1 - 3x)^{-1/2}$

State the condition for validity.

2. Find the coefficient of $x^4$ in $(1 + 2x)^{-3}$

Use the general binomial theorem.

3. Using binomial theorem, approximate $\sqrt[3]{1.03}$ to 4 decimal places

Hint: Write as $(1 + 0.03)^{1/3}$

Ready for More Advanced Concepts?

Continue your journey through the Binomial Theorem series